
IDP-Z3

Jan 04, 2021

Contents:

1 Introduction 1
1.1 Installation using poetry . 1
1.2 Installation using pip . 2
1.3 Installation of idp_solver module . 3

2 The IDP Language 5
2.1 Overview . 5
2.2 Shebang . 6
2.3 Vocabulary . 6
2.4 Theory . 7
2.5 Structure . 9
2.6 Main block . 9
2.7 Differences with IDP3 . 11
2.8 Syntax summary . 11

3 Command Line Interface 13

4 Interactive Consultant 15
4.1 Display . 15
4.2 Vocabulary annotations . 16
4.3 Environment . 16
4.4 Default Structure . 17

5 Appendix: IDP-Z3 developer reference 19
5.1 Architecture . 19
5.2 idp_solver module . 22
5.3 idp_server module . 33

6 Index 37

7 Indices and tables 39

Python Module Index 41

Index 43

i

ii

CHAPTER 1

Introduction

IDP-Z3 is a collection of software components implementing the Knowledge Base paradigm using the IDP language
and a Z3 SMT solver.

In the Knowledge Base paradigm, the knowledge about a particular problem domain is encoded using a declarative
language, and later used to solve particular problems by applying the appropriate type of reasoning, or “inference”.
The inferences include:

• model checking: does a particular solution satisfy the laws in the knowledge base ?

• model search: extend a partial solution into a full solution

• model propagation: find the facts that are common to all solutions that extend a partial one

The IDP-Z3 components together enable the creation of these solutions:

• the Interactive Consultant, which allow a knowledge expert to enter knowledge about a particular problem
domain, and an end user to interactively find solutions for particular problem instances;

• a program with a command line interface to compute inferences on a knowledge base;

• a web-based Interactive Development Environment (IDE) to create Knowledge bases.

Warning: You may want to verify that you are seeing the documentation relevant for the version of IDP-Z3 you
are using. On readthedocs, you can see the version under the title (top left corner), and you can change it using the
listbox at the bottom left corner.

1.1 Installation using poetry

Poetry is a package manager for python.

• Install python3 on your machine

• Install poetry

1

https://interactive-consultant.ew.r.appspot.com/
https://interactive-consultant.ew.r.appspot.com/IDE
https://docs.idp-z3.be/
https://python-poetry.org/
https://www.python.org/downloads/
https://python-poetry.org/docs/#installation

IDP-Z3

– after that, logout and login if requested, to update $PATH

• Use git to clone https://gitlab.com/krr/IDP-Z3 to a directory on your machine

• Open a terminal in that directory

• If you have several versions of python3, and want to run on a particular one, e.g., 3.9:

– run poetry env use 3.9

– replace python3 by python3.9 in the commands below

• Run poetry install

To launch the Interactive Consultant web server:

• open a terminal in that directory and run poetry run python3 main.py

After that, you can open

• the Interactive Consultant at http://127.0.0.1:5000

• the web IDE at http://127.0.0.1:5000/IDE

1.2 Installation using pip

IDP-Z3 can be installed using the python package ecosystem.

• install python 3, with pip3, making sure that python3 is in the PATH.

• use git to clone https://gitlab.com/krr/IDP-Z3 to a directory on your machine

• (For Linux and MacOS) open a terminal in that directory and run the following commands.

python3 -m venv .
source bin/activate
python3 -m pip install -r requirements.txt

• (For Windows) open a terminal in that directory and run the following commands.

python3 -m venv .
.\Scripts\activate
python3 -m pip install -r requirements.txt

To launch the web server on Linux/MacOS, run

source bin/activate
python3 main.py

On Windows, the commands are:

.\Scripts\activate
python3 main.py

After that, you can open

• the Interactive Consultant at http://127.0.0.1:5000

• the web IDE at http://127.0.0.1:5000/IDE

2 Chapter 1. Introduction

https://gitlab.com/krr/IDP-Z3
http://127.0.0.1:5000
http://127.0.0.1:5000/IDE
https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://gitlab.com/krr/IDP-Z3
http://127.0.0.1:5000
http://127.0.0.1:5000/IDE

IDP-Z3

1.3 Installation of idp_solver module

The idp_solver module is available for installation through the official Python package repository. This comes with a
command line program, idp_solver that functions as described in Command Line Interface.

To install the module via poetry, the following commands can be used to add the module, and then install it.

poetry add idp_solver
poetry install

Installing the module via pip can be done as such:

pip3 install idp_solver

1.3. Installation of idp_solver module 3

IDP-Z3

4 Chapter 1. Introduction

CHAPTER 2

The IDP Language

2.1 Overview

The IDP language is used to create knowledge bases. An IDP program is made of the following blocks of code:

vocabulary specify the types, predicates, functions and constants used to describe the problem domain.

theory specify the definitions and constraints satisfied by any solutions.

structure (optional) specify the interpretation of some predicates, functions and constants.

display (optional) configure the user interface of the Interactive Consultant.

main (optional) executable procedure in the context of the knowledge base

The basic skeleton of an IDP knowledge base for the Interactive Consultant is as follows:

vocabulary {
// here comes the specification of the vocabulary

}

theory {
// here comes the definitions and constraints

}

structure {
// here comes the interpretation of some symbols

}

display {
// here comes the configuration of the user interface

}

Everything between // and the end of the line is a comment.

5

IDP-Z3

2.2 Shebang

New in version 0.5.5

The first line of an IDP program may be a shebang line, specifying the version of IDP-Z3 to be used. When a version
is specified, the Interactive Consultant and Web IDE will be redirected to a server on the web running that version.
The list of versions is available here. (The IDP-Z3 executable ignores the shebang.)

Example: #! IDP-Z3 0.5.4

2.3 Vocabulary

vocabulary V {
// here comes the vocabulary named V

}

The vocabulary block specifies the types, predicates, functions and constants used to describe the problem domain. If
the name is omitted, the vocabulary is named V.

Each declaration goes on a new line (or are space separated). Symbols begins with an alphabetic character or _,
followed by alphanumeric characters or _. Symbols can also be string literals delimited by ', e.g., 'blue planet'.

2.3.1 Types

IDP-Z3 has the following built-in types: Bool, Int, Real, `Symbols.

Custom types can be defined by specifying a range of numeric literals, or a list of constructors (of arity 0). Their name
should be capitalized, by convention.

type Side = {1..4}
type Color constructed from {red, blue, green}

The type `Symbols has one constructor for each symbol (i.e., function, predicate or constant) declared in the vo-
cabulary. The constructors are the names of the symbol, prefixed with ` For the above example, the constructors of
`Symbols are : `red, `blue, `green.

2.3.2 Functions

A function with name MyFunc, input types T1, T2, T3 and output type T, is declared by:

MyFunc(T1, T2, T3) : T

IDP-Z3 does not support partial functions.

2.3.3 Predicates

A predicate with name MyPred and argument types T1, T2, T3 is declared by:

MyPred(T1, T2, T3)

6 Chapter 2. The IDP Language

https://en.wikipedia.org/wiki/Shebang_(Unix)
https://gist.github.com/IDP-Z3/5d82c61fa39e8aa23da1642a2e2b420a

IDP-Z3

2.3.4 Propositions and Constants

A proposition is a predicate of arity 0; a constant is a function of arity 0.

MyProposition
MyConstant: Int

2.3.5 Include another vocabulary

A vocabulary W may include a previously defined vocabulary V:

vocabulary W {
extern vocabulary V
// here comes the vocabulary named V

}

2.4 Theory

theory T:V {
// here comes the theory named T, on vocabulary named V

}

A theory is a set of constraints and definitions to be satisfied. If the names are omitted, the theory is named T, for
vocabulary V.

Before explaining their syntax, we need to introduce the concept of term.

2.4.1 Mathematical expressions and Terms

A term is inductively defined as follows:

Numeric literal Numeric literals that follow the Python conventions are numerical terms of type Int or Real.

Constructor Each constructor of a type is a term having that type.

Constant a constant is a term whose type is derived from its declaration in the vocabulary.

Variable a variable is a term. Its type is derived from the quantifier expression that declares it (see below).

Function application 𝐹 (𝑡1, 𝑡2, .., 𝑡𝑛) is a term, when 𝐹 is a function symbol of arity 𝑛, and 𝑡1, 𝑡2, .., 𝑡𝑛 are terms.
Each term must be of the appropriate type, as defined in the function declaration in the vocabulary. The resulting
type of the function application is also defined in the function declaration.

Negation -𝑡 is a numerical term, when 𝑡 is a numerical term.

Arithmetic 𝑡1𝑡2 is a numerical term, when 𝑡1, 𝑡2 are two numerical terms, and is one of the following math operators
+,−, *, /,̂ ,%. Mathematical operators can be chained as customary (e.g. 𝑥+𝑦+𝑧). The usual order of binding
is used.

Parenthesis (𝑡) is a term, when 𝑡 is a term

Cardinality aggregate #{𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑} is a numerical term when 𝑣1𝑣2..𝑣𝑛 are variables, and
𝜑 is a sentence containing these variables.

The term denotes the number of tuples of distinct values for 𝑣1𝑣2..𝑣𝑛 which make 𝜑 true.

2.4. Theory 7

https://docs.python.org/3/reference/lexical_analysis.html#numeric-literals

IDP-Z3

Arithmetic aggregate {𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑 : 𝑡} is a numerical term when is 𝑠𝑢𝑚, 𝑣1𝑣2..𝑣𝑛 are
variables, 𝜑 is a sentence, and 𝑡 is a term.

The term denotes the sum of 𝑡 for each distinct tuple of values for 𝑣1𝑣2..𝑣𝑛 which make 𝜑 true.

(if .. then .. else ..) (𝑖𝑓 𝑡1 𝑡ℎ𝑒𝑛 𝑡2 𝑒𝑙𝑠𝑒 𝑡3) is a term when 𝑡1 is a sentence, 𝑡2 and 𝑡3 are terms of the same type.

2.4.2 Sentences and constraints

A constraint is a sentence followed by .. A sentence is inductively defined as follows:

true and false true and false are sentences.

Predicate application 𝑃 (𝑡1, 𝑡2, .., 𝑡𝑛) is a sentence, when 𝑃 is a predicate symbol of arity 𝑛, and 𝑡1, 𝑡2, .., 𝑡𝑛 are
terms. Each term must be of the appropriate type, as defined in the predicate declaration. If the arity of 𝑃 is 0,
i.e., if 𝑃 is a proposition, then 𝑃 and 𝑃 () are sentences.

Comparison 𝑡1𝑡2 is a sentence, when 𝑡1, 𝑡2 are two numerical terms and is one of the following comparison operators
<, ,=, , >, (or, using ascii characters: =<,>=,∼=). Comparison operators can be chained as customary.

Negation ¬ 𝜑 is a sentence (or, using ascii characters: ∼ 𝜑) when 𝜑 is a sentence.

Logic connectives 𝜑1𝜑2 is a sentence when 𝜑1, 𝜑2 are two sentences and is one of the following logic connectives
∨,∧,⇒,⇐,⇔ (or using ascii characters: |,&,=>,<=, <=> respectively). Logic connectives can be chained
as customary.

Parenthesis (𝜑) is a sentence when 𝜑 is a sentence.

Enumeration An enumeration (e.g. p = {1;2;3}) is a sentence. Enumerations follow the syntax described in
structure.

Quantified formulas Quantified formulas are sentences. They have one of these two forms, where 𝑣1, .., 𝑣𝑛 are
variables and 𝜑 is a sentence:

∃𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑

∀𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑

Alternatively, ascii characters can be used: ?, !, respectively. For example, !x[Int] y[Int]: f(x,
y)=f(y,x). A variable may only occur in the 𝜑 sentence of a quantifier declaring that variable.

When quantifying a formula of type `Symbols, the expression must contain a “guard” to prevent arity or type
error. A guard is a predicate over `Symbols that is defined by an enumeration in the same theory block. In the
following example, symmetric must be defined by enumeration.

!`p[`Symbols]: symmetric(`p) => (!x y : `p(x,y) => `p(y,x)).

“is (not) enumerated” 𝑓(𝑎, 𝑏) 𝑖𝑠 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒𝑑 and 𝑓(𝑎, 𝑏) 𝑖𝑠 𝑛𝑜𝑡 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑒𝑑 are sentences, where 𝑓 is a function
defined by an enumeration and applied to arguments 𝑎 and 𝑏. Its truth value reflects whether (𝑎, 𝑏) is enumerated
in 𝑓 ’s enumeration. If the enumeration has a default value, every tuple of arguments is enumerated.

“in {1,2,3,4}” 𝑓(𝑎𝑟𝑔𝑠) 𝑖𝑛 𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is a sentence, where 𝑓 is a function applied to arguments 𝑎𝑟𝑔𝑠 and
𝑒𝑛𝑢𝑚𝑒𝑟𝑎𝑡𝑖𝑜𝑛 is an enumeration.

if .. then .. else .. 𝑖𝑓 𝑡1 𝑡ℎ𝑒𝑛 𝑡2 𝑒𝑙𝑠𝑒 𝑡3 is a sentence when 𝑡1, 𝑡2 and 𝑡3 are sentences.

2.4.3 Definitions

A definition defines concepts, i.e. predicates or functions, in terms of other concepts. A definition consists of a set of
rules, enclosed by { and }.

8 Chapter 2. The IDP Language

IDP-Z3

Rules have one of the following forms:

∀𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝑃 (𝑡1, .., 𝑡𝑛)← 𝜑.

∀𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝐹 (𝑡1, .., 𝑡𝑛) = 𝑡← 𝜑.

where P is a predicate symbol, F is a function symbol, 𝑡, 𝑡1, 𝑡2, .., 𝑡𝑛 are terms that may contain the variables 𝑣1𝑣2..𝑣𝑛
and 𝜑 is a formula that may contain these variables. 𝑃 (𝑡1, 𝑡2, .., 𝑡𝑛) is called the head of the rule and 𝜑 the body. <-
can be used instead of ‘←’. If the body is true, the left arrow and body of the rule can be omitted.

2.5 Structure

structure S:V {
// here comes the structure named S, for vocabulary named V

}

A structure specifies the interpretation of some predicates and functions, by enumeration. If the names are omitted,
the structure is named S, for vocabulary V.

A structure is a set of enumerations, having one of the following forms:

𝑃 = { 𝑒𝑙11, 𝑒𝑙21, ...𝑒𝑙𝑛1 ;
𝑒𝑙12, 𝑒𝑙

2
2, ...𝑒𝑙

𝑛
2 ;

..

}
𝐹 = { 𝑒𝑙11, 𝑒𝑙21, ...𝑒𝑙𝑛1 , 𝑒𝑙1;

𝑒𝑙12, 𝑒𝑙
2
2, ...𝑒𝑙

𝑛
2 , 𝑒𝑙2;

..

} 𝑒𝑙𝑠𝑒 𝑒𝑙
𝑍 = 𝑒𝑙.

where 𝑃 is a predicate of arity 𝑛, 𝐹 is a function of arity 𝑛, and 𝑒𝑙𝑗𝑖 are constructors or numeric literals.

The first statement enumerates the tuples of terms that make the predicate 𝑃 true.

The second statement specifies the value 𝑒𝑙𝑛𝑖 for the function 𝐹 applied to the tuple of 𝑒𝑙𝑗𝑖 arguments. The element
after 𝑒𝑙𝑠𝑒 specifies the function value for the non-enumerated tuples of arguments. This default value is optional; when
omitted, the value of the function for the non-enumerated tuples, if any, is unspecified.

The third statement assigns the value 𝑒𝑙 to the symbol 𝑍 (of arity 0).

2.6 Main block

The main block consists of python-like statements to be executed by the IDP-Z3 executable or the Web IDE, in the
context of the knowledge base. It takes the following form:

procedure main() {
// here comes the python-like code to be executed

}

The vocabularies, theories and structures defined in other blocks of the IDP program are available through variables
of the same name.

The following functions are available:

2.5. Structure 9

IDP-Z3

model_check(theory, structure=None) Returns string sat, unsat or unknown, depending on whether the theory
has a model expanding the structure. theory and structure can be lists, in which case their elements are
merged. The structure is optional.

For example, print(model_check(T, S)) will print sat if theory named T has a model expanding
structure named S.

model_expand(theory, structure=None, max=10, complete=False) Returns a list of models of the theory that are
expansion of the structure. theory and structure can be lists, in which case their elements are merged.
The structure is optional. The result is limited to max models (10 by default), or unlimited if max is 0. The
models can be asked to be complete or partial (i.e., in which “don’t care” terms are not specified).

For example, print(model_expand(T, S)) will print (up to) 10 models of theory named T expanding
structure named S.

model_propagate(theory, structure=None) Returns a list of assignments that are true in any expansion of the struc-
ture consistent with the theory. theory and structure can be lists, in which case their elements are merged.
The structure is optional. Terms and symbols starting with ‘_’ are ignored.

For example, print(model_propagate(T, S)) will print the assignments that are true in any expansion
of the structure named S consistent with the theory named T.

decision_table(theories, structures=None, goal_string=””, timeout=20, max_rows=50, first_hit=True)
Experimental. Returns the rows for a decision table that defines goal_string. goal_string must
be a predicate application defined in the theory.

print(. . .) Prints the arguments on stdout

2.6.1 Problem class

The main block can also use instances of the Problem class. This is beneficial when several inferences must be made
in a row (e.g., Problem(T,S).propagate().simplify().formula()). Instances of the Problem class
represent a collection of theory and structure blocks. The class has the following methods:

__init__(self, *blocks) Creates an instance of Problem for the list of blocks, e.g., Problem(T,S)

add(self, block) Adds a theory or structure block to the problem.

copy(self) Returns an independent copy of a problem.

formula(self) Returns a python object representing the logic formula equivalent to the problem. This object can be
converted to a string using str().

expand(self, max=10, complete=False) Returns a list of models of the theory that are expansion of the known as-
signments. The result is limited to max models (10 by default), or unlimited if max is 0. The models can be
asked to be complete or partial (i.e., in which “don’t care” terms are not specified).

optimize(self, term, minimize=True, complete=False) Returns the problem with its assignments property up-
dated with values such that the term is minimized (or maximized if minimize is False) term is a string
(e.g. "Length(1)"). The models can be asked to be complete or partial (i.e., in which “don’t care” terms are
not specified).

symbolic_propagate(self) Returns the problem with its assignments property updated with direct consequences
of the constraints of the problem. This propagation is less complete than propagate().

propagate(self) Returns the problem with its assignments property updated with values for all terms and atoms
that have the same value in every model (i.e., satisfying structure of the problem). Terms and propositions
starting with ‘_’ are ignored.

simplify(self) Returns the problem with a simplified formula of the problem, by substituting terms and atoms by their
values specified in a structure or obtained by propagation.

10 Chapter 2. The IDP Language

IDP-Z3

decision_table(self, goal_string=””, timeout=20, max_rows=50, first_hit=True) Experimental. Returns the rows
for a decision table that defines goal_string. goal_string must be a predicate application defined in the
theory.

2.7 Differences with IDP3

Here are the main differences with IDP3, listed for migration purposes:

min/max aggregates IDP-Z3 does not support these aggregates (yet). See IEP 05

Inductive definitions IDP-Z3 does not support inductive definitions.

Infinite domains IDP-Z3 supports infinite domains: Int, Real. However, quantifications over infinite domains is
discouraged.

if .. then .. else .. IDP-Z3 supports if .. then .. else .. terms and sentences.

LTC IDP-Z3 does not support LTC vocabularies.

Namespaces IDP-Z3 does not support namespaces.

N-ary constructors IDP-Z3 does not support n-ary constructors, e.g., RGB(Int, Int, Int). See IEP 06

Partial functions IDP-Z3 does not support partial functions. The handling of division by 0 may differ. See IEP 07

Programming API IDP3 procedures are written in Lua, IDP-Z3 procedures are written in Python-like language.

Qualified quantifications IDP-Z3 does not support qualified quantifications, e.g. !2 x[color]: p(x).. (p.
11 of the IDP3 manual).

Structure IDP-Z3 does not support u uncertain interpretations (p.17 of IDP3 manual). Function enumerations must
have an else part. (see also IEP 04)

Type Type enumerations must be done in the vocabulary block (not in the structure block). IDP-Z3 does not support
type hierarchies.

To improve performance, do not quantify over the value of a function. Use p(f(x)) instead of ?y: f(x)=y &
p(y).

2.8 Syntax summary

The following code illustrates the syntax of IDP. T denotes a type, c a constructor, p a proposition or predicate, f a
constant or function. The equivalent ASCII-only encoding is shown on the right.

vocabulary V {
type T constructed from {c1, c2}
type T = {1;2;3}
type T = {1..3}
// built-in types: Bool, Int, Real, `Symbols

p
p(T)
f(T):T

[this is the intended meaning of p]
p

extern vocabulary W
(continues on next page)

2.7. Differences with IDP3 11

https://gitlab.com/krr/IDP-Z3/-/wikis/IEP-05-Min-and-Max-aggregate
https://gitlab.com/krr/IDP-Z3/-/wikis/IEP-06-n-ary-constructors
https://gitlab.com/krr/IDP-Z3/-/wikis/IEP-07-Division-by-0
https://gitlab.com/krr/IDP-Z3/-/wikis/IEP-04-Incomplete-enumerations

IDP-Z3

(continued from previous page)

}

theory T:V {
(¬p1p2 p3 p4 p5) p6. (~p1&p2 | p3 => p4 <=> p5) <= p6.
p(f1(f2())).
f1() < f2() f3() = f4() f5() > f6(). f1() < f2() =< f3() = f4() >= f5() > f6().
f() c. f() ~= c.
x[T]: p(x). !x[T]: p(x).
x: p(x). ?x: p(x).

f() in {1;2;3}.
f() = #{x[T]: p(x)}.
f() = sum{x[T]: p(x): f(x)}.
if p1 then p2 else p3.
f1() = if p then f2() else f3().

p = {1;2;3}
p(1) is enumerated.
p(5) is not enumerated.

{ p(1).
x: p1(x) <- p2(x). !x: p1(x) <- p2(x).
f(1)=1.
x: f(x)=1 <- p(x). !x: f(x)=1 <- p(x).

}

[this is the intended meaning of the rule]
(p).

}

structure S:V {
p = {1;2;3}
f = {1,1; 2,2}
f = {1,1} else 2
f=1.

}

display {
expand(`p).
hide(`p).
view = expanded.
relevant(`p1, `p2).
goal(`p).
optionalPropagation.

}

procedure main() {
print(model_check (T,S))
print(model_expand (T,S))
print(model_propagate(T,S))

}

12 Chapter 2. The IDP Language

CHAPTER 3

Command Line Interface

IDP-Z3 can be run through a Command Line Interface, using poetry (see Installation):

poetry run python3 IDP-Z3.py path/to/file.idp

where path/to/file.idp is a relative path to the file containing the IDP program to be run. This file must contain a main
block.

Alternatively, you can run it using pip-installed packages.

python3 IDP-Z3.py path/to/file.idp

13

IDP-Z3

14 Chapter 3. Command Line Interface

CHAPTER 4

Interactive Consultant

The Interactive Consultant tool enables experts to digitize their knowledge of a specific problem domain. With the
resulting knowledge base, an online interface is automatically created that serves as a web tool supporting end users
to find solutions for specific problems within that knowledge domain.

The tool uses source code in the IDP-Z3 language as input. However, there are some specific changes and additions
when using IDP-Z3 in the Interactive Consultant, which are explained further in this chapter.

4.1 Display

The display block configures the user interface of the Interactive Consultant. It consists of a set of display facts, i.e.,
predicate and function applications terminated by ..

The following predicates and functions are available:

expand 𝑒𝑥𝑝𝑎𝑛𝑑(𝑠1, .., 𝑠𝑛) specifies that symbols 𝑠1, .., 𝑠𝑛 are shown expanded, i.e., that all sub-sentences of the
theory where they occur are shown on the screen.

For example, expand(`Length). will force the Interactive Consultant to show all sub-sentences containing
Length.

hide ℎ𝑖𝑑𝑒(𝑠1, .., 𝑠𝑛) specifies that symbols 𝑠1, .., 𝑠𝑛 are not shown on the screen.

For example, hide(`Length). will force the Interactive Consultant to not display the box containing Length
information.

view view = normal. (default) specifies that symbols are displayed in normal mode.

view = expanded. specifies that symbols are displayed expanded.

relevant 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑠1, .., 𝑠𝑛) specifies that symbols 𝑠1, .., 𝑠𝑛 are relevant, i.e. that they should never be greyed out.

Irrelevant symbols and sub-sentences, i.e. symbols whose interpretation do not constrain the interpretation of
the relevant symbols, are greyed out by the Interactive Consultant.

goal 𝑔𝑜𝑎𝑙(𝑠) specifies that symbols 𝑠 is a goal, i.e. that it is relevant and shown expanded.

15

IDP-Z3

moveSymbols When the display block contains moveSymbols., the Interactive Consultant is allowed to change
the layout of symbols on the screen, so that relevant symbols come first.

By default, the symbols do not move.

optionalPropagation When the display block contains optionalPropagation, a toggle button will be available
in the interface which allows toggling immediate propagation on and off.

By default, this button is not present.

4.2 Vocabulary annotations

To improve the display of functions and predicates in the Interactive Consultant, they can be annotated with their
intended meaning, a short comment, or a long comment. These annotations are enclosed in [and], and come before
the symbol declaration.

Intended meaning [this is a text] specifies the intended meaning of the symbol. This text is shown in the
header of the symbol’s box.

Short info [short:this is a short comment] specifies the short comment of the symbol. This comment
is shown when the mouse is over the info icon in the header of the symbol’s box.

Long info [long:this is a long comment] specifies the long comment of the symbol. This comment is
shown when the user clicks the info icon in the header of the symbol’s box.

4.3 Environment

Often, some elements of a problem instance are under the control of the user (possibly indirectly), while others are
not.

To capture this difference, the IDP language allows the creation of 2 vocabularies and 2 theories. The first one is called
‘environment’, the second ‘decision’. Hence, a more advanced skeleton of an IDP knowledge base is:

vocabulary environment {
// here comes the specification of the vocabulary to describe the environment

}

vocabulary decision {
extern vocabulary environment
// here comes the specification of the vocabulary to describe the decisions and

→˓their consequences
}

theory environment:environment {
// here comes the definitions and constraints satisfied by any environment

→˓possibly faced by the user
}

theory decision:decision {
// here comes the definitions and constraints to be satisfied by any solution

}

structure environment:environment {
// here comes the interpretation of some environmental symbols

}

(continues on next page)

16 Chapter 4. Interactive Consultant

IDP-Z3

(continued from previous page)

structure decision:decision {
// here comes the interpretation of some decision symbols

}

display {
// here comes the configuration of the user interface

}

4.4 Default Structure

The default structure functions similarly to a normal Structure, in the sense that it can be used to set values of symbols.
However, these values are set as if they were given by the user: they are shown in the interface as selected values. The
symbols can still be assigned different values, or they can be unset.

In this way, this type of structure is used to form a default set of values for symbols. Such a structure is given the name
‘default’, to denote that it specifies default values. The syntax of the block remains the same.

structure default {
// here comes the structure

}

4.4. Default Structure 17

IDP-Z3

18 Chapter 4. Interactive Consultant

CHAPTER 5

Appendix: IDP-Z3 developer reference

Note: The contents of this reference are intended for people who want to further develop IDP-Z3.

Note: Despite our best efforts, this documentation may not be complete and up-to-date.

The components of IDP-Z3 are shown below.

• webIDE client: browser-based application to edit and run IDP-Z3 programs

• Interactive Consultant client: browser-based user-friendly decision support application

• Read_the_docs : online documentation

• Homepage

• IDP-Z3 server: web server for both web applications

• IDP-Z3 command line interface

• IDP-Z3 solver: performs inferences on IDP-Z3 theories

• Z3: SMT solver developed by Microsoft

The source code of IDP-Z3 is publicly available under the GNU LGPL v3 license. You may want to check the
Development and deployment guide.

5.1 Architecture

This document presents the technical architecture of IDP-Z3.

Essentially, the IDP-Z3 components translate the requested inferences on the knowledge base into satisfiability prob-
lems that Z3 can solve.

19

https://interactive-consultant.idp-z3.be/IDE
https://interactive-consultant.idp-z3.be/
http://docs.idp-z3.be/en/stable/
https://www.idp-z3.be/
https://github.com/Z3Prover/z3
https://en.wikipedia.org/wiki/Satisfiability_modulo_theories
https://gitlab.com/krr/IDP-Z3
https://gitlab.com/krr/IDP-Z3/-/wikis/Development-and-deployment-guide

IDP-Z3

5.1.1 Web clients

The repository for the web clients is in a separate GitLab repository.

The clients are written in Typescript, using the Angular framework (version 7.1), and the primeNG library of wid-
gets. It uses the Monaco editor. The interactions with the server are controlled by idp.service.ts. The AppSettings
file contains important settings, such as the address of the IDP-Z3 sample theories.

The web clients are sent to the browser by the IDP-Z3 server as static files. The static files are generated by the /
IDP-Z3/deploy.py script as part of the deployment, and saved in the /IDP-Z3/idp_server/static folder.

See the Appendix of Development and deployment guide on the wiki for a discussion on how to set-up your environ-
ment to develop web clients.

The /docs/zettlr/REST.md file describes the format of the data exchanged between the web client and the
server. The exchange of data while using web clients can be visualised in the developer mode of most browsers
(Chrome, Mozilla, . . .).

The web clients could be packaged into an executable using nativefier.

5.1.2 Read The Docs, Homepage

The online documentation and Homepage are written in ReStructuredText, generated using sphinx and hosted on
readthedocs.org and GitLab Pages respectively. The contents is in the /docs and /homepage folders of IDP-Z3.

We use the following sphinx extensions: Mermaid (diagrams), and Markdown.

5.1.3 IDP-Z3 server

The code for the IDP-Z3 server is in the /idp_server folder.

The IDP-Z3 server is written in python 3.8, using the Flask framework. Pages are served by /idp_server/rest.
py. Static files are served from the /idp_server/static directory, including the compiled version of the client
software.

At start-up, and every time the idp code is changed on the client, the idp code is sent to the /meta URL by the
client. The server responds with the list of symbols to be displayed. A subsequent call (/eval) returns the questions
to be displayed. After that, when the user clicks on a GUI element, information is sent to the /eval URL, and the
server responds as necessary.

The information given by the user is combined with the idp code (in State.py), and, using adequate inferences, the
questions are put in these categories with their associated value (if any):

• given: given by the user

• universal: always true (or false), per idp code

• consequences: consequences of user’s input according to theory

• irrelevant: made irrelevant by user’s input

• unknown

The IDP-Z3 server implements custom inferences such as the computation of relevance (Inferences.py), and the han-
dling of environmental vs. decision variables.

20 Chapter 5. Appendix: IDP-Z3 developer reference

https://gitlab.com/krr/web-IDP-Z3
https://www.typescriptlang.org/
https://angular.io/
https://www.primefaces.org/primeng/#/
https://www.npmjs.com/package/ngx-monaco-editor
https://gitlab.com/krr/web-IDP-Z3/blob/main/src/services/idp.service.ts
https://gitlab.com/krr/web-IDP-Z3/blob/main/src/services/AppSettings.ts
https://gitlab.com/krr/web-IDP-Z3/blob/main/src/services/AppSettings.ts
https://gitlab.com/krr/IDP-Z3/-/wikis/Development-and-deployment-guide
https://github.com/jiahaog/Nativefier
http://docs.idp-z3.be/en/stable/
https://www.idp-z3.be/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html
https://www.sphinx-doc.org/en/master/
https://readthedocs.org/projects/idp-z3/
https://gitlab.com/krr/IDP-Z3/pages
https://pypi.org/project/sphinxcontrib-mermaid/
https://www.sphinx-doc.org/en/master/usage/markdown.html
https://flask.palletsprojects.com/en/1.1.x/
/code_modules/server_state.html
/code_modules/server_inferences.html

IDP-Z3

5.1.4 IDP-Z3 solver

The code for the IDP-Z3 solver and IDP-Z3-CLI is in the /idp_solver folder. The IDP-Z3 solver exposes an API
implemented by Run.py and Problem.py.

Translating knowledge inferences into satisfiability problems that Z3 can solve involves these steps:

1. parsing the idp code and the info entered by the user,

2. converting it to the Z3 format,

3. calling the appropriate method,

4. formatting the response.

The IDP-Z3 code is parsed into an abstract syntax tree (AST) using the textx package, according to this gram-
mar. There is one python class per type of AST nodes (see Parse.py and Expression.py)

The conversion to the Z3 format is performed by the following passes over the AST generated by the parser:

1. annotate the nodes by resolving names, and computing some derived information (e.g. type) (annotate())

2. expand quantifiers in the theory, as far as possible. (expand_quantifiers())

3. when a structure is given:

1. expand quantifiers based on the structure (grounding); perform type inference as necessary
(expand_quantifiers())

2. simplify the theory using the data in the structure and the laws of logic (by interpret() and
update_exprs())

3. instantiate the definitions for every calls of the defined symbols (recursively) (interpret())

4. convert to Z3, adding the type constraints not enforced by Z3 (.translate())

The code is organised by steps, not by classes: for example, all methods to substitute an expression by another are
grouped in Substitute.py. We use monkey-patching to attach methods to the classes declared in another module.

Important classes of the IDP-Z3 solver are: Expression, Assignment, Problem.

Substitute() modifies the AST “in place”. Because the results of step 1-2 are cached, steps 4-7 are done after copying
the AST (custom copy()).

5.1.5 Z3

See this tutorial for an introduction to Z3 (or this guide).

You may also want to refer to the Z3py reference.

5.1.6 Appendix: Dependencies and Licences

The IDP-Z3 tools are published under the GNU LGPL v3 license.

The server software uses the following components (see requirements.txt):

• Z3: MIT license

• Z3-solver: MIT license

• Flask: BSD License (BSD-3-Clause)

• flask_restful : BSD license

5.1. Architecture 21

/IDPLanguage.html#main-block
/code_modules/solver_run.html
/code_modules/solver_problem.html
https://en.wikipedia.org/wiki/Abstract_syntax_tree
https://github.com/textX/textX
https://gitlab.com/krr/IDP-Z3/blob/main/idp_solver/Idp.tx
https://gitlab.com/krr/IDP-Z3/blob/main/idp_solver/Idp.tx
/code_modules/solver_parse.html
/code_modules/solver_expression.html
/code_modules/solver_substitute.html
https://www.geeksforgeeks.org/monkey-patching-in-python-dynamic-behavior/
/code_modules/solver_expression.html#idp_solver.Expression.Expression
/code_modules/solver_assignments.html#idp_solver.Assignments.Assignment
/code_modules/solver_problem.html#idp_solver.Problem.Problem
https://ericpony.github.io/z3py-tutorial/guide-examples.htm
https://docs.google.com/presentation/d/1BgXIJNZJD6YTAT5k5ZSMv4irMeMA9a41EnJsIO1eK9Y/edit?usp=sharing
https://z3prover.github.io/api/html/namespacez3py.html
https://www.gnu.org/licenses/lgpl-3.0.en.html
https://gitlab.com/krr/IDP-Z3/-/blob/main/requirements.txt
https://github.com/Z3Prover/z3
https://github.com/Z3Prover/z3/blob/master/LICENSE.txt
https://pypi.org/project/z3-solver/
https://pypi.org/project/Flask/
https://pypi.org/project/Flask-RESTful/

IDP-Z3

• flask_cors : MIT license

• pycallgraph2 : GNU GPLv2

• gunicorn : MIT license

• textx: MIT license

The client-side software uses the following components:

• Angular: MIT-style license

• PrimeNg: MIT license

• ngx-monaco-editor: MIT license

• packery: GPL-3.0

• primeicons: MIT

• isotope-layout: GNU GPL-3.0

• isotope-packery: MIT

• core-js: MIT

• dev: None

• git-describe: MIT

• rxjs: Apache 2.0

• tslib: Apache 2.0

• zone.js: MIT

5.2 idp_solver module

5.2.1 idp_solver.Assignments

Classes to store assignments of values to questions

class idp_solver.Assignments.Status
Describes how the value of a question was obtained

class idp_solver.Assignments.Assignment(sentence: idp_solver.Expression.Expression, value:
Optional[idp_solver.Expression.Expression], sta-
tus: Optional[idp_solver.Assignments.Status], rel-
evant: Optional[bool] = False)

Represent the assignment of a value to a question. Questions can be:

• predicates and functions applied to arguments,

• comparisons,

• outermost quantified expressions

A value is a rigid term.

An assignment also has a reference to the symbol under which it should be displayed.

sentence
the question to be assigned a value

Type Expression

22 Chapter 5. Appendix: IDP-Z3 developer reference

https://pypi.org/project/Flask-Cors/
https://pypi.org/project/pycallgraph2/
https://pypi.org/project/gunicorn/
https://pypi.org/project/textX/
https://angular.io/
https://angular.io/license
https://github.com/primefaces/primeng
https://github.com/primefaces/primeng/blob/master/LICENSE
https://www.npmjs.com/package/ngx-monaco-editor
https://www.npmjs.com/package/packery
https://www.npmjs.com/package/primeicons
https://www.npmjs.com/package/isotope-layout
https://www.npmjs.com/package/isotope-packery
https://www.npmjs.com/package/core-js
https://www.npmjs.com/package/dev
https://www.npmjs.com/package/git-describe
https://www.npmjs.com/package/rxjs
https://www.npmjs.com/package/tslib
https://www.npmjs.com/package/zone.js

IDP-Z3

value
a rigid term

Type Expression, optional

status
qualifies how the value was obtained

Type Status, optional

relevant
states whether the sentence is relevant

Type bool, optional

symbol_decl
declaration of the symbol under which

Type SymbolDeclaration

it should be displayed.

same_as(other: idp_solver.Assignments.Assignment)→ bool
returns True if self has the same sentence and truth value as other.

Parameters other (Assignment) – an assignment

Returns True if self has the same sentence and truth value as other.

Return type bool

negate()
returns an Assignment for the same sentence, but an opposite truth value.

Raises AssertionError – Cannot negate a non-boolean assignment

Returns returns an Assignment for the same sentence, but an opposite truth value.

Return type [type]

as_set_condition()
returns an equivalent set condition, or None

Returns meaning “appSymb is (not) in enumeration”

Return type Tuple[Optional[AppliedSymbol], Optional[bool], Optional[Enumeration]]

class idp_solver.Assignments.Assignments(*arg, **kw)
Contains a set of Assignment

copy()→ a shallow copy of D

5.2.2 idp_solver.Expression

(They are monkey-patched by other modules)

class idp_solver.Expression.Expression
Bases: object

The abstract class of AST nodes representing (sub-)expressions.

code
Textual representation of the expression. Often used as a key.

It is generated from the sub-tree. Some tree transformations change it (e.g., instantiate), others don’t.

5.2. idp_solver module 23

IDP-Z3

Type string

sub_exprs
The children of the AST node.

The list may be reduced by simplification.

Type List[Expression]

type
The name of the type of the expression, e.g., bool.

Type string

co_constraint
A constraint attached to the node.

For example, the co_constraint of square(length(top())) is square(length(top())) =
length(top())*length(top())., assuming square is appropriately defined.

The co_constraint of a defined symbol applied to arguments is the instantiation of the definition for those
arguments. This is useful for definitions over infinite domains, as well as to compute relevant questions.

Type Expression, optional

simpler
A simpler, equivalent expression.

Equivalence is computed in the context of the theory and structure. Simplifying an expression is useful for
efficiency and to compute relevant questions.

Type Expression, optional

value
A rigid term equivalent to the expression, obtained by transformation.

Equivalence is computed in the context of the theory and structure.

Type Optional[Expression]

annotations
The set of annotations given by the expert in the IDP source code.

annotations['reading'] is the annotation giving the intended meaning of the expression (in En-
glish).

Type Dict

original
The original expression, before transformation.

Type Expression

fresh_vars
The set of names of the variables in the expression.

Type Set(string)

copy()
create a deep copy (except for Constructor and NumberConstant)

annotate(voc, q_vars)
annotate tree after parsing

annotate1()
annotations that are common to __init__ and make()

24 Chapter 5. Appendix: IDP-Z3 developer reference

IDP-Z3

collect(questions, all_=True, co_constraints=True)
collects the questions in self.

questions is an OrderedSet of Expression Questions are the terms and the simplest sub-formula that can be
evaluated. collect uses the simplified version of the expression.

all_=False : ignore expanded formulas and AppliedSymbol interpreted in a structure co_constraints=False
: ignore co_constraints

default implementation for Constructor, IfExpr, AUnary, Fresh_Variable, Number_constant, Brackets

unknown_symbols(co_constraints=True)
returns the list of symbol declarations in self, ignoring type constraints

returns Dict[name, Declaration]

co_constraints(co_constraints)
collects the constraints attached to AST nodes, e.g. instantiated definitions

‘co_constraints is an OrderedSet of Expression

as_rigid()
returns a NumberConstant or Constructor, or None

substitute(e0, e1, assignments, todo=None)
recursively substitute e0 by e1 in self (e0 is not a Fresh_Variable)

implementation for everything but AppliedSymbol, Variable and Fresh_variable

instantiate(e0, e1, theory)
recursively substitute Fresh_Variable e0 by e1 in self

instantiating e0=‘x by e1=‘f in self=‘x(y) returns f(y) (or any instance of f if arities don’t match)

interpret(theory)
for every defined term in self, add the instantiated definition as co-constraint

implementation for everything but AppliedSymbol, Variable and Fresh_variable

expand_quantifiers(theory)
replaces quantified formula by its expansion

implementation for everything but AQuantification and AAgregate

symbolic_propagate(assignments: idp_solver.Assignments.Assignments,
truth: Optional[idp_solver.Expression.Constructor] =
true) → List[Tuple[idp_solver.Expression.Expression,
idp_solver.Expression.Constructor]]

returns the consequences of self=truth that are in assignments.

The consequences are obtained by symbolic processing (no calls to Z3).

Parameters

• assignments (Assignments) – The set of questions to chose from. Their value is
ignored.

• truth (Constructor, optional) – The truth value of the expression self. Defaults
to TRUE.

Returns A list of pairs (Expression, bool), descring the literals that are implicant

propagate1(assignments, truth)
returns the list of symbolic_propagate of self (default implementation)

5.2. idp_solver module 25

IDP-Z3

as_set_condition()→ Tuple[Optional[AppliedSymbol], Optional[bool], Optional[Enumeration]]
Returns an equivalent expression of the type “x in y”, or None

Returns meaning “expr is (not) in enumeration”

Return type Tuple[Optional[AppliedSymbol], Optional[bool], Optional[Enumeration]]

class idp_solver.Expression.Constructor(**kwargs)
Bases: idp_solver.Expression.Expression

as_rigid()
returns a NumberConstant or Constructor, or None

update_exprs(new_exprs)
change sub_exprs and simplify, while keeping relevant info.

class idp_solver.Expression.IfExpr(**kwargs)
Bases: idp_solver.Expression.Expression

annotate1()
annotations that are common to __init__ and make()

class idp_solver.Expression.AQuantification(**kwargs)
Bases: idp_solver.Expression.Expression

classmethod make(q, q_vars, f)
make and annotate a quantified formula

annotate(voc, q_vars)
annotate tree after parsing

annotate1()
annotations that are common to __init__ and make()

collect(questions, all_=True, co_constraints=True)
collects the questions in self.

questions is an OrderedSet of Expression Questions are the terms and the simplest sub-formula that can be
evaluated. collect uses the simplified version of the expression.

all_=False : ignore expanded formulas and AppliedSymbol interpreted in a structure co_constraints=False
: ignore co_constraints

default implementation for Constructor, IfExpr, AUnary, Fresh_Variable, Number_constant, Brackets

class idp_solver.Expression.BinaryOperator(**kwargs)
Bases: idp_solver.Expression.Expression

classmethod make(ops, operands)
creates a BinaryOp beware: cls must be specific for ops !

annotate1()
annotations that are common to __init__ and make()

collect(questions, all_=True, co_constraints=True)
collects the questions in self.

questions is an OrderedSet of Expression Questions are the terms and the simplest sub-formula that can be
evaluated. collect uses the simplified version of the expression.

all_=False : ignore expanded formulas and AppliedSymbol interpreted in a structure co_constraints=False
: ignore co_constraints

default implementation for Constructor, IfExpr, AUnary, Fresh_Variable, Number_constant, Brackets

26 Chapter 5. Appendix: IDP-Z3 developer reference

IDP-Z3

class idp_solver.Expression.AImplication(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.AEquivalence(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.ARImplication(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

annotate(voc, q_vars)
annotate tree after parsing

class idp_solver.Expression.ADisjunction(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.AConjunction(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.AComparison(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

annotate(voc, q_vars)
annotate tree after parsing

annotate1()
annotations that are common to __init__ and make()

class idp_solver.Expression.ASumMinus(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.AMultDiv(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.APower(**kwargs)
Bases: idp_solver.Expression.BinaryOperator

class idp_solver.Expression.AUnary(**kwargs)
Bases: idp_solver.Expression.Expression

annotate1()
annotations that are common to __init__ and make()

class idp_solver.Expression.AAggregate(**kwargs)
Bases: idp_solver.Expression.Expression

annotate(voc, q_vars)
annotate tree after parsing

collect(questions, all_=True, co_constraints=True)
collects the questions in self.

questions is an OrderedSet of Expression Questions are the terms and the simplest sub-formula that can be
evaluated. collect uses the simplified version of the expression.

all_=False : ignore expanded formulas and AppliedSymbol interpreted in a structure co_constraints=False
: ignore co_constraints

default implementation for Constructor, IfExpr, AUnary, Fresh_Variable, Number_constant, Brackets

class idp_solver.Expression.AppliedSymbol(**kwargs)
Bases: idp_solver.Expression.Expression

annotate(voc, q_vars)
annotate tree after parsing

5.2. idp_solver module 27

IDP-Z3

annotate1()
annotations that are common to __init__ and make()

collect(questions, all_=True, co_constraints=True)
collects the questions in self.

questions is an OrderedSet of Expression Questions are the terms and the simplest sub-formula that can be
evaluated. collect uses the simplified version of the expression.

all_=False : ignore expanded formulas and AppliedSymbol interpreted in a structure co_constraints=False
: ignore co_constraints

default implementation for Constructor, IfExpr, AUnary, Fresh_Variable, Number_constant, Brackets

substitute(e0, e1, assignments, todo=None)
recursively substitute e0 by e1 in self

update_exprs(new_exprs)
change sub_exprs and simplify, while keeping relevant info.

class idp_solver.Expression.Variable(**kwargs)
Bases: idp_solver.Expression.AppliedSymbol

annotate(voc, q_vars)
annotate tree after parsing

collect(questions, all_=True, co_constraints=True)
collects the questions in self.

questions is an OrderedSet of Expression Questions are the terms and the simplest sub-formula that can be
evaluated. collect uses the simplified version of the expression.

all_=False : ignore expanded formulas and AppliedSymbol interpreted in a structure co_constraints=False
: ignore co_constraints

default implementation for Constructor, IfExpr, AUnary, Fresh_Variable, Number_constant, Brackets

substitute(e0, e1, assignments, todo=None)
recursively substitute e0 by e1 in self

update_exprs(new_exprs)
change sub_exprs and simplify, while keeping relevant info.

class idp_solver.Expression.Fresh_Variable(name, sort)
Bases: idp_solver.Expression.Expression

update_exprs(new_exprs)
change sub_exprs and simplify, while keeping relevant info.

class idp_solver.Expression.NumberConstant(**kwargs)
Bases: idp_solver.Expression.Expression

as_rigid()
returns a NumberConstant or Constructor, or None

update_exprs(new_exprs)
change sub_exprs and simplify, while keeping relevant info.

class idp_solver.Expression.Brackets(**kwargs)
Bases: idp_solver.Expression.Expression

as_rigid()
returns a NumberConstant or Constructor, or None

28 Chapter 5. Appendix: IDP-Z3 developer reference

IDP-Z3

annotate1()
annotations that are common to __init__ and make()

5.2.3 idp_solver.idp_to_Z3

Translates AST tree to Z3

TODO: vocabulary

5.2.4 idp_solver.Propagate

Computes the consequences of an expression, i.e., the sub-expressions that are necessarily true (or false) if the expres-
sion is true (or false)

This module monkey-patches the Expression class and sub-classes.

5.2.5 idp_solver.Parse

Classes to parse and annotate an IDP-Z3 theory.

class idp_solver.Parse.Idp(**kwargs)
Bases: object

The class of AST nodes representing an IDP-Z3 program.

execute()
Execute the IDP program

class idp_solver.Parse.Vocabulary(**kwargs)
Bases: object

The class of AST nodes representing a vocabulary block.

class idp_solver.Parse.SymbolDeclaration(**kwargs)
Bases: object

The class of AST nodes representing an entry in the vocabulary, declaring a symbol.

annotations
the annotations given by the expert.

annotations[‘reading’] is the annotation giving the intended meaning of the expression (in English).

name
the identifier of the symbol

Type string

sorts
the types of the arguments

Type List[Sort]

out
the type of the symbol

type
the name of the type of the symbol

Type string

5.2. idp_solver module 29

IDP-Z3

arity
the number of arguments

Type int

function
True if the symbol is a function

Type bool

domain
the list of possible tuples of arguments

Type List

instances
a mapping from the code of a symbol applied to a tuple of arguments to its parsed AST

Type Dict[string, Expression]

range
the list of possible values

Type List[Expression]

typeConstraints
the type constraint on the ranges of the symbol applied to each possible tuple of arguments

Type List[Expression]

class idp_solver.Parse.Theory(**kwargs)
Bases: object

The class of AST nodes representing a theory block.

class idp_solver.Parse.Structure(**kwargs)
Bases: object

The class of AST nodes representing an structure block.

annotate(idp)
Annotates the structure with the enumerations found in it. Every enumeration is converted into an assign-
ment, which is added to self.assignments.

Parameters idp – a Parse.Idp object.

Returns None

5.2.6 idp_solver.Problem

Class to represent a collection of theory and structure blocks.

class idp_solver.Problem.Problem(*blocks)
A collection of theory and structure blocks.

constraints
a set of assertions.

Type OrderedSet

assignments
the set of assignments. The assignments are updated by the different steps of the problem resolution.

Type Assignment

30 Chapter 5. Appendix: IDP-Z3 developer reference

IDP-Z3

clark
A mapping of defined symbol to the rule that defines it.

Type dict[SymbolDeclaration, Rule]

def_constraints
A mapping of defined symbol to the whole-domain constraint equivalent to its definition.

Type dict[SymbolDeclaration], Expression

interpretations
A mapping of enumerated symbols to their interpretation.

Type dict[string, SymbolInterpretation]

_formula
the logic formula that represents the problem.

Type Expression, optional

questions
the set of questions in the problem. Questions include predicates and functions applied to arguments,
comparisons, and variable-free quantified expressions.

Type OrderedSet

co_constraints
the set of co_constraints in the problem.

Type OrderedSet

classmethod make(theories, structures)
polymorphic creation

formula()
the formula encoding the knowledge base

expand(max=10, complete=False, extended=False)
output: a list of Assignments, ending with a string

symbolic_propagate(tag=<Status.UNIVERSAL: 4>)
determine the immediate consequences of the constraints

propagate(tag=<Status.CONSEQUENCE: 6>, extended=False)
determine all the consequences of the constraints

simplify()
simplify constraints using known assignments

decision_table(goal_string=”, timeout=20, max_rows=50, first_hit=True)
returns a decision table for goal_string, given self.

Parameters

• goal_string (str, optional) – the last column of the table.

• timeout (int, optional) – maximum duration in seconds. Defaults to 20.

• max_rows (int, optional) – maximum number of rows. Defaults to 50.

• first_hit (bool, optional) – requested hit-policy. Defaults to True.

Returns the non-empty cells of the decision table

Return type list(list(Assignment))

5.2. idp_solver module 31

IDP-Z3

5.2.7 idp_solver.Run

Classes to execute the main block of an IDP program

idp_solver.Run.model_check(theories, structures=None)
output: “sat”, “unsat” or “unknown”

idp_solver.Run.model_expand(theories, structures=None, max=10, complete=False, ex-
tended=False)

output: a list of Assignments, ending with a string

idp_solver.Run.model_propagate(theories, structures=None)
output: a list of Assignment

idp_solver.Run.decision_table(theories, structures=None, goal_string=”, timeout=20,
max_rows=50, first_hit=True)

output: a list of rows for a decision table

idp_solver.Run.execute(self)
Execute the IDP program

5.2.8 idp_solver.Simplify

Methods to simplify a logic expression.

This module monkey-patches the Expression class and sub-classes.

idp_solver.Simplify.join_set_conditions(assignments: List[idp_solver.Assignments.Assignment])
→ List[idp_solver.Assignments.Assignment]

In a list of assignments, merge assignments that are set-conditions on the same term.

An equality and a membership predicate (in operator) are both set-conditions.

Parameters assignments (List[Assignment]) – the list of assignments to make more com-
pact

Returns the compacted list of assignments

Return type List[Assignment]

5.2.9 idp_solver.Substitute

Methods to

• substitute a constant by its value in an expression

• replace symbols interpreted in a structure by their interpretation

• instantiate an expresion, i.e. replace a variable by a value

• expand quantifiers

This module monkey-patches the Expression class and sub-classes.

(see docs/zettlr/Substitute.md)

5.2.10 idp_solver.utils

Various utilities (in particular, OrderedSet)

32 Chapter 5. Appendix: IDP-Z3 developer reference

IDP-Z3

idp_solver.utils.REAL = 'Real'
Module that monkey-patches json module when it’s imported so JSONEncoder.default() automatically checks
for a special “to_json()” method and uses it to encode the object if found.

class idp_solver.utils.OrderedSet(els=[])
a list of expressions without duplicates (first-in is selected)

5.3 idp_server module

5.3.1 idp_server.Inferences

This module contains the logic for inferences that are specific for the Interactive Consultant.

idp_server.Inferences.get_relevant_subtences(self)
sets ‘relevant in self.assignments sets rank of symbols in self.relevant_symbols removes irrelevant constraints in
self.constraints

5.3.2 idp_server.IO

This module contains code to create and analyze messages to/from the web client.

idp_server.IO.metaJSON(state)
Format a response to meta request.

Parameters idp – the response

Returns out a meta request

idp_server.IO.decode_UTF(json_str: str)→ str
Convert all Python unicode to actual unicode characters.

Parameters json_str – the string to convert

Returns the converted string

Return type str

idp_server.IO.json_to_literals(state, jsonstr: str)
Parse a json string and create assignments in a state accordingly. This function can also overwrite assignments
that have already been set as a default assignment, effectively overriding the default.

Parameters

• state – a State object containing the concepts that appear in the json

• jsonstr – the user’s assignments in json

Returns the assignments

Return type idp_solver.Assignments

5.3.3 idp_server.rest

This module implements the IDP-Z3 web server

class idp_server.rest.HelloWorld

5.3. idp_server module 33

IDP-Z3

idp_server.rest.idpOf(code)
Function to retrieve an Idp object for IDP code. If the object doesn’t exist yet, we create it. idps is a dict which
contains an Idp object for each IDP code. This way, easy caching can be achieved.

Parameters code – the IDP code.

Returns Idp the Idp object.

class idp_server.rest.run
Class which handles the run. <<Explanation of what the run is here.>>

Parameters Resource – <<explanation of resource>>

post()
Method to run an IDP program with a procedure block.

:returns stdout.

class idp_server.rest.meta
Class which handles the meta. <<Explanation of what the meta is here.>>

Parameters Resource – <<explanation of resource>>

post()
Method to export the metaJSON from the resource.

Returns metaJSON a json string containing the meta.

class idp_server.rest.metaWithGraph

post()
Method to export the metaJSON from the resource.

Returns metaJSON a json string containing the meta.

class idp_server.rest.eval

class idp_server.rest.evalWithGraph

5.3.4 idp_server.State

Management of the State of problem solving with the Interactive Consultant.

class idp_server.State.State(idp: idp_solver.Parse.Idp)
Contains a state of problem solving

add_given(jsonstr: str)
Add the assignments that the user gave through the interface. These are in the form of a json string. This
method also sets the values of the default structure.

Parameters jsonstr – the user’s assignment in json

Returns the state with the jsonstr added

Return type State

idp_server.State.make_state(idp: idp_solver.Parse.Idp, jsonstr: str)→ idp_server.State.State
Manages the cache of States.

Parameters

• idp – IDP code parsed into Idp object

• jsonstr – the user’s assignments in json

34 Chapter 5. Appendix: IDP-Z3 developer reference

IDP-Z3

Returns the complete state of the system

Return type State

5.3. idp_server module 35

IDP-Z3

36 Chapter 5. Appendix: IDP-Z3 developer reference

CHAPTER 6

Index

37

IDP-Z3

38 Chapter 6. Index

CHAPTER 7

Indices and tables

• Index

• search

39

IDP-Z3

40 Chapter 7. Indices and tables

Python Module Index

i
idp_server.Inferences, 33
idp_server.IO, 33
idp_server.rest, 33
idp_server.State, 34
idp_solver.Assignments, 22
idp_solver.Expression, 23
idp_solver.Idp_to_Z3, 29
idp_solver.Parse, 29
idp_solver.Problem, 30
idp_solver.Propagate, 29
idp_solver.Run, 32
idp_solver.Simplify, 32
idp_solver.Substitute, 32
idp_solver.utils, 32

41

IDP-Z3

42 Python Module Index

Index

Symbols
_formula (idp_solver.Problem.Problem attribute), 31

A
AAggregate (class in idp_solver.Expression), 27
AComparison (class in idp_solver.Expression), 27
AConjunction (class in idp_solver.Expression), 27
add_given() (idp_server.State.State method), 34
ADisjunction (class in idp_solver.Expression), 27
AEquivalence (class in idp_solver.Expression), 27
AImplication (class in idp_solver.Expression), 26
AMultDiv (class in idp_solver.Expression), 27
annotate() (idp_solver.Expression.AAggregate

method), 27
annotate() (idp_solver.Expression.AComparison

method), 27
annotate() (idp_solver.Expression.AppliedSymbol

method), 27
annotate() (idp_solver.Expression.AQuantification

method), 26
annotate() (idp_solver.Expression.ARImplication

method), 27
annotate() (idp_solver.Expression.Expression

method), 24
annotate() (idp_solver.Expression.Variable method),

28
annotate() (idp_solver.Parse.Structure method), 30
annotate1() (idp_solver.Expression.AComparison

method), 27
annotate1() (idp_solver.Expression.AppliedSymbol

method), 27
annotate1() (idp_solver.Expression.AQuantification

method), 26
annotate1() (idp_solver.Expression.AUnary

method), 27
annotate1() (idp_solver.Expression.BinaryOperator

method), 26
annotate1() (idp_solver.Expression.Brackets

method), 28

annotate1() (idp_solver.Expression.Expression
method), 24

annotate1() (idp_solver.Expression.IfExpr method),
26

annotation (vocabulary), 16
annotations (idp_solver.Expression.Expression at-

tribute), 24
annotations (idp_solver.Parse.SymbolDeclaration

attribute), 29
APower (class in idp_solver.Expression), 27
AppliedSymbol (class in idp_solver.Expression), 27
AQuantification (class in idp_solver.Expression),

26
ARImplication (class in idp_solver.Expression), 27
arity (idp_solver.Parse.SymbolDeclaration attribute),

29
as_rigid() (idp_solver.Expression.Brackets method),

28
as_rigid() (idp_solver.Expression.Constructor

method), 26
as_rigid() (idp_solver.Expression.Expression

method), 25
as_rigid() (idp_solver.Expression.NumberConstant

method), 28
as_set_condition()

(idp_solver.Assignments.Assignment method),
23

as_set_condition()
(idp_solver.Expression.Expression method), 25

Assignment (class in idp_solver.Assignments), 22
Assignments (class in idp_solver.Assignments), 23
assignments (idp_solver.Problem.Problem attribute),

30
ASumMinus (class in idp_solver.Expression), 27
AUnary (class in idp_solver.Expression), 27

B
BinaryOperator (class in idp_solver.Expression), 26
Brackets (class in idp_solver.Expression), 28

43

IDP-Z3

C
clark (idp_solver.Problem.Problem attribute), 30
co_constraint (idp_solver.Expression.Expression

attribute), 24
co_constraints (idp_solver.Problem.Problem at-

tribute), 31
co_constraints() (idp_solver.Expression.Expression

method), 25
code (idp_solver.Expression.Expression attribute), 23
collect() (idp_solver.Expression.AAggregate

method), 27
collect() (idp_solver.Expression.AppliedSymbol

method), 28
collect() (idp_solver.Expression.AQuantification

method), 26
collect() (idp_solver.Expression.BinaryOperator

method), 26
collect() (idp_solver.Expression.Expression

method), 24
collect() (idp_solver.Expression.Variable method),

28
constant, 6
constraint, 8
constraints (idp_solver.Problem.Problem attribute),

30
constructor, 6
Constructor (class in idp_solver.Expression), 26
copy() (idp_solver.Assignments.Assignments method),

23
copy() (idp_solver.Expression.Expression method), 24

D
decision_table() (idp_solver.Problem.Problem

method), 31
decision_table() (in module idp_solver.Run), 32
decode_UTF() (in module idp_server.IO), 33
def_constraints (idp_solver.Problem.Problem at-

tribute), 31
default structure, 17
definition, 8
display block, 15
domain (idp_solver.Parse.SymbolDeclaration attribute),

30

E
environment, 16
eval (class in idp_server.rest), 34
evalWithGraph (class in idp_server.rest), 34
execute() (idp_solver.Parse.Idp method), 29
execute() (in module idp_solver.Run), 32
expand() (idp_solver.Problem.Problem method), 31
expand_quantifiers()

(idp_solver.Expression.Expression method), 25
expanded view, 15

Expression (class in idp_solver.Expression), 23

F
formula() (idp_solver.Problem.Problem method), 31
Fresh_Variable (class in idp_solver.Expression), 28
fresh_vars (idp_solver.Expression.Expression at-

tribute), 24
function, 6
function (idp_solver.Parse.SymbolDeclaration at-

tribute), 30

G
get_relevant_subtences() (in module

idp_server.Inferences), 33

H
HelloWorld (class in idp_server.rest), 33

I
Idp (class in idp_solver.Parse), 29
IDP3, 11
idp_server.Inferences (module), 33
idp_server.IO (module), 33
idp_server.rest (module), 33
idp_server.State (module), 34
idp_solver.Assignments (module), 22
idp_solver.Expression (module), 23
idp_solver.Idp_to_Z3 (module), 29
idp_solver.Parse (module), 29
idp_solver.Problem (module), 30
idp_solver.Propagate (module), 29
idp_solver.Run (module), 32
idp_solver.Simplify (module), 32
idp_solver.Substitute (module), 32
idp_solver.utils (module), 32
idpOf() (in module idp_server.rest), 33
IfExpr (class in idp_solver.Expression), 26
include vocabulary, 7
Installation, 1
instances (idp_solver.Parse.SymbolDeclaration at-

tribute), 30
instantiate() (idp_solver.Expression.Expression

method), 25
intended meaning, 16
Interactive Consultant, 1
interpret() (idp_solver.Expression.Expression

method), 25
interpretations (idp_solver.Problem.Problem at-

tribute), 31

J
join_set_conditions() (in module

idp_solver.Simplify), 32

44 Index

IDP-Z3

json_to_literals() (in module idp_server.IO), 33

M
main block, 9
make() (idp_solver.Expression.AQuantification class

method), 26
make() (idp_solver.Expression.BinaryOperator class

method), 26
make() (idp_solver.Problem.Problem class method), 31
make_state() (in module idp_server.State), 34
meta (class in idp_server.rest), 34
metaJSON() (in module idp_server.IO), 33
metaWithGraph (class in idp_server.rest), 34
model_check() (in module idp_solver.Run), 32
model_expand() (in module idp_solver.Run), 32
model_propagate() (in module idp_solver.Run), 32

N
name (idp_solver.Parse.SymbolDeclaration attribute), 29
negate() (idp_solver.Assignments.Assignment

method), 23
NumberConstant (class in idp_solver.Expression), 28

O
OrderedSet (class in idp_solver.utils), 33
original (idp_solver.Expression.Expression attribute),

24
out (idp_solver.Parse.SymbolDeclaration attribute), 29

P
post() (idp_server.rest.meta method), 34
post() (idp_server.rest.metaWithGraph method), 34
post() (idp_server.rest.run method), 34
predicate, 6
Problem (class in idp_solver.Problem), 30
propagate() (idp_solver.Problem.Problem method),

31
propagate1() (idp_solver.Expression.Expression

method), 25
proposition, 6

Q
quantifier expression, 8
questions (idp_solver.Problem.Problem attribute), 31

R
range (idp_solver.Parse.SymbolDeclaration attribute),

30
REAL (in module idp_solver.utils), 32
relevant (idp_solver.Assignments.Assignment at-

tribute), 23
rule, 8
run (class in idp_server.rest), 34

S
same_as() (idp_solver.Assignments.Assignment

method), 23
sentence, 8
sentence (idp_solver.Assignments.Assignment at-

tribute), 22
Shebang, 5
simpler (idp_solver.Expression.Expression attribute),

24
simplify() (idp_solver.Problem.Problem method), 31
sorts (idp_solver.Parse.SymbolDeclaration attribute),

29
State (class in idp_server.State), 34
Status (class in idp_solver.Assignments), 22
status (idp_solver.Assignments.Assignment attribute),

23
structure, 9
Structure (class in idp_solver.Parse), 30
sub_exprs (idp_solver.Expression.Expression at-

tribute), 24
substitute() (idp_solver.Expression.AppliedSymbol

method), 28
substitute() (idp_solver.Expression.Expression

method), 25
substitute() (idp_solver.Expression.Variable

method), 28
symbol, 6
symbol_decl (idp_solver.Assignments.Assignment at-

tribute), 23
SymbolDeclaration (class in idp_solver.Parse), 29
symbolic_propagate()

(idp_solver.Expression.Expression method), 25
symbolic_propagate()

(idp_solver.Problem.Problem method), 31

T
term, 7
theory, 7
Theory (class in idp_solver.Parse), 30
type, 6
type (idp_solver.Expression.Expression attribute), 24
type (idp_solver.Parse.SymbolDeclaration attribute), 29
typeConstraints (idp_solver.Parse.SymbolDeclaration

attribute), 30

U
unknown_symbols()

(idp_solver.Expression.Expression method), 25
update_exprs() (idp_solver.Expression.AppliedSymbol

method), 28
update_exprs() (idp_solver.Expression.Constructor

method), 26
update_exprs() (idp_solver.Expression.Fresh_Variable

method), 28

Index 45

IDP-Z3

update_exprs() (idp_solver.Expression.NumberConstant
method), 28

update_exprs() (idp_solver.Expression.Variable
method), 28

V
value (idp_solver.Assignments.Assignment attribute),

22
value (idp_solver.Expression.Expression attribute), 24
Variable (class in idp_solver.Expression), 28
vocabulary, 6
Vocabulary (class in idp_solver.Parse), 29

46 Index

	Introduction
	Installation using poetry
	Installation using pip
	Installation of idp_solver module

	The IDP Language
	Overview
	Shebang
	Vocabulary
	Theory
	Structure
	Main block
	Differences with IDP3
	Syntax summary

	Command Line Interface
	Interactive Consultant
	Display
	Vocabulary annotations
	Environment
	Default Structure

	Appendix: IDP-Z3 developer reference
	Architecture
	idp_solver module
	idp_server module

	Index
	Indices and tables
	Python Module Index
	Index

