Source code for idp_engine.Parse

# Copyright 2019-2023 Ingmar Dasseville, Pierre Carbonnelle
#
# This file is part of IDP-Z3.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program.  If not, see <https://www.gnu.org/licenses/>.

"""

Classes to parse an IDP-Z3 theory.

"""

from __future__ import annotations

from copy import copy, deepcopy
from datetime import date
from enum import Enum
from itertools import groupby
from os import path
from sys import intern
from textx import metamodel_from_file
from typing import Tuple, List, Union, Optional, TYPE_CHECKING


from .Assignments import Assignments
from .Expression import (
    Annotations,
    Annotation,
    ASTNode,
    Constructor,
    CONSTRUCTOR,
    Accessor,
    SymbolExpr,
    Expression,
    AGenExist,
    AIfExpr,
    IF,
    AQuantification,
    split_quantees,
    SetName,
    SETNAME,
    Quantee,
    ARImplication,
    AEquivalence,
    AImplication,
    ADisjunction,
    AConjunction,
    AComparison,
    ASumMinus,
    AMultDiv,
    APower,
    AUnary,
    AAggregate,
    AppliedSymbol,
    UnappliedSymbol,
    Number,
    Brackets,
    Date,
    Extension,
    Identifier,
    Variable,
    TRUEC,
    FALSEC,
    TRUE,
    FALSE,
    EQUALS,
    AND,
    OR,
    BOOL_SETNAME,
    INT_SETNAME,
    REAL_SETNAME,
    DATE_SETNAME,
)
from .utils import (
    RESERVED_SYMBOLS,
    OrderedSet,
    NEWL,
    BOOL,
    INT,
    REAL,
    DATE,
    CONCEPT,
    GOAL_SYMBOL,
    EXPAND,
    RELEVANT,
    ABS,
    COUNTER,
    IDPZ3Error,
    MAX_QUANTIFIER_EXPANSION,
    Semantics as S,
    flatten,
    split_prefix,
)

if TYPE_CHECKING:
    from .Theory import Theory


[docs]def str_to_IDP( val_string: str, type_: SetName, ) -> Expression: """recursive function to decode a val_string in set `type_` Args: type_ (SetName): set containing the value val_string (str): a string containing a value Raises: IDPZ3Error: if wrong value Returns: Expression: the internal representation of the value """ if type_.decl is None: assert type_ == BOOL_SETNAME, "Internal error" out = ( TRUE if val_string in [TRUE, "True"] else FALSE if val_string in [FALSE, "False"] else None ) if out is None: raise IDPZ3Error(f"wrong boolean value: {val_string}") elif ( hasattr(type_.root_set[0].decl, "map") and val_string in type_.root_set[0].decl.map ): # constructor out = type_.root_set[0].decl.map[val_string] elif 1 < len(val_string.split("(")): # e.g., pos(0,0) assert hasattr(type_.decl, "interpretation"), "Internal error" # find constructor name and its arguments in val_string stack: List[int] = [] args: List[str] = [] for i, c in enumerate(val_string): if c == "(": name: str = val_string[:i].strip() if len(stack) == 0 else name stack.append(i + 1) elif c == "," and len(stack) == 1: start = stack.pop() args.append(val_string[start:i]) stack.append(i + 2) elif c == ")": start = stack.pop() if len(stack) == 0: args.append( val_string[start:i] ) # TODO construct the AppliedSymbol here, rather than later # find the constructor constructor = None assert type(type_.decl.interpretation) == SymbolInterpretation, "Internal error" for cons in type_.decl.interpretation.enumeration.constructors: if cons.name == name: constructor = cons assert constructor is not None, f"wrong constructor name '{name}' for {type_}" new_args = [] for a, s in zip(args, constructor.domains): assert s.decl is not None, "Internal error" new_args.append(str_to_IDP(a, s)) out = AppliedSymbol.construct(constructor, new_args) else: interp = getattr(type_.root_set[0].decl, "interpretation", None) enum_type = ( interp.enumeration.type.name if interp else type_.decl.name if type(type_.decl) == TypeDeclaration else type_.decl.codomain.name ) if type_ == BOOL_SETNAME or enum_type == BOOL: out = ( TRUE if val_string in [TRUE, "True"] else FALSE if val_string in [FALSE, "False"] else None ) if out is None: raise IDPZ3Error(f"wrong boolean value: {val_string}") elif type_ == DATE_SETNAME or enum_type == DATE: d = ( date.fromordinal(eval(val_string)) if not val_string.startswith("#") else date.fromisoformat(val_string[1:]) ) out = Date(iso=f"#{d.isoformat()}") elif type_ == REAL_SETNAME or enum_type == REAL: out = Number( number=val_string if "/" in val_string else str(float(eval(val_string.replace("?", "")))) ) elif type_ == INT_SETNAME or enum_type == INT: out = Number(number=str(eval(val_string))) else: raise IDPZ3Error(f"unknown type for: {val_string}: {type_.decl}") return out
[docs]class ViewType(Enum): HIDDEN = "hidden" NORMAL = "normal" EXPANDED = "expanded"
[docs]class IDP(ASTNode): """The class of AST nodes representing an IDP-Z3 program.""" """ do not display this info in the API Attributes: code (str): source code of the IDP program vocabularies (dict[str, Vocabulary]): list of vocabulary blocks, by name theories (dict[str, TheoryBlock]): list of theory blocks, by name structures (dict[str, Structure]): list of structure blocks, by name procedures (dict[str, Procedure]): list of procedure blocks, by name display (Display, Optional): display block, if any warnings (Exceptions): list of warnings """ from .EN import EN_idp as EN
[docs] def __init__(self, **kwargs): # log("parsing done") self.code = None self.vocabularies = self.dedup_nodes(kwargs, "vocabularies") self.theories = self.dedup_nodes(kwargs, "theories") self.structures = self.dedup_nodes(kwargs, "structures") displays = kwargs.pop("displays") self.procedures = self.dedup_nodes(kwargs, "procedures") # If a global prefix has been declared, pass it on to the vocabularies. self.prefixes = { name: pref.uri for (name, pref) in self.dedup_nodes(kwargs, "prefixes").items() } for name, voc in self.vocabularies.items(): for k, v in self.prefixes.items(): self.check( k not in voc.declared_prefixes or voc.declared_prefixes[k] == v, f"Conflicting prefix: {k}", ) voc.declared_prefixes[k] = v assert len(displays) <= 1, "Too many display blocks" self.display = displays[0] if len(displays) == 1 else None for voc in self.vocabularies.values(): voc.annotate_block(self) self.warnings = flatten(t.annotate_block(self) for t in self.theories.values()) for struct in self.structures.values(): struct.annotate_block(self) # determine default vocabulary, theory, before annotating display self.vocabulary = next(iter(self.vocabularies.values())) self.theory = next(iter(self.theories.values())) if self.display is None: self.display = Display(constraints=[], interpretations=[])
[docs] @classmethod def from_file(cls, file: str) -> "IDP": """parse an IDP program from file Args: file (str): path to the source file Returns: IDP: the result of parsing the IDP program """ assert path.exists(file), f"Can't find {file}" with open(file, "r", encoding="utf-8") as source: code = source.read() return cls.from_str(code)
[docs] @classmethod def from_str(cls, code: str) -> "IDP": """parse an IDP program Args: code (str): source code to be parsed Returns: IDP: the result of parsing the IDP program """ out = idpparser.model_from_str(code) out.code = code return out
[docs] @classmethod def parse(cls, file_or_string: str) -> "IDP": """DEPRECATED: parse an IDP program Args: file_or_string (str): path to the source file, or the source code itself Returns: IDP: the result of parsing the IDP program """ print("IDP.parse() is deprecated. Use `from_file` or `from_str` instead") code = file_or_string if path.exists(file_or_string): with open(file_or_string, "r", encoding="utf-8") as source: code = source.read() out = idpparser.model_from_str(code) out.code = code return out
[docs] def get_blocks(self, blocks: List[str] | str) -> List[ASTNode]: """returns the AST nodes for the blocks whose names are given Args: blocks (List[str]): list of names of the blocks to retrieve Returns: List[Union[Vocabulary, TheoryBlock, Structure, Procedure, Display]]: list of AST nodes """ names = blocks.split(",") if type(blocks) is str else blocks out = [] for name in names: name = name.strip() # remove spaces out.append( self.vocabularies[name] if name in self.vocabularies else self.theories[name] if name in self.theories else self.structures[name] if name in self.structures else self.procedures[name] if name in self.procedures else self.display if name == "Display" else "" ) return out
def execute(self) -> None: raise IDPZ3Error("Internal error") # monkey-patched
################################ Vocabulary ##############################
[docs]class Vocabulary(ASTNode): """The class of AST nodes representing a vocabulary block.""" from .Annotate import annotate_block_voc as annotate_block
[docs] def __init__( self, parent: ASTNode, name: str, prefixes, declarations: List[Union[Declaration, VarDeclaration, Import]], ): self.name = name self.idp: Optional[IDP] = None # parent object self.symbol_decls: dict[ str, Union[Declaration, VarDeclaration, Constructor] ] = {} self.name = "V" if not self.name else self.name # self.voc = self self.prefix = split_prefix(self.name) # Keep track of prefixes declared inside of the vocabulary or at # the top-level (the latter are added in IDP.__init__). self.declared_prefixes = {pref.name: pref.uri for pref in prefixes} # expand multi-symbol declarations temp = [] for decl in declarations: if isinstance(decl, SymbolDeclaration): for symbol in decl.symbols: new = copy(decl) # shallow copy ! if new.partiality == "partial" and decl.domains == decl.sorts: # partial function without domain declaration --> create a domain symbol name = f"dom_{symbol}" dom = SymbolDeclaration( parent=parent, annotations=None, sorts=new.domains, sort_=BOOL_SETNAME, name=name, ) temp.append(dom) set_name = SetName(parent=parent, name=name) new.domains = [set_name] new.name = intern(symbol) new.private = new.name.startswith("_") new.symbols = None temp.append(new) else: temp.append(decl) self.declarations = temp # define built-in types: Bool, Int, Real, Symbols self.declarations = [ TypeDeclaration(self, name=BOOL, constructors=[TRUEC, FALSEC]), TypeDeclaration(self, name=INT, enumeration=IntRange()), TypeDeclaration(self, name=REAL, enumeration=RealRange()), TypeDeclaration(self, name=DATE, enumeration=DateRange()), TypeDeclaration(self, name=CONCEPT, constructors=[]), SymbolDeclaration.make( self, name=GOAL_SYMBOL, sorts=[SETNAME(CONCEPT, ins=[], out=SETNAME(BOOL))], sort_=SETNAME(BOOL), ), SymbolDeclaration.make( self, name=RELEVANT, sorts=[SETNAME(CONCEPT, ins=[], out=SETNAME(BOOL))], sort_=SETNAME(BOOL), ), SymbolDeclaration.make( self, name=ABS, sorts=[INT_SETNAME], sort_=INT_SETNAME ), ] + self.declarations
def __str__(self): return ( f"vocabulary {{{NEWL}" f" {f'{NEWL} '.join(str(i) for i in self.declarations)}" f"{NEWL}}}{NEWL}" ).replace(" \n", "")
[docs] def add_voc_to_block(self, block): """adds the enumerations in a vocabulary to a theory or structure block Args: block (Theory): the block to be updated """ for s in self.declarations: block.check( s.name not in block.declarations, f"Duplicate declaration of {self.name} " f"in vocabulary and block {block.name}", ) block.declarations[s.name] = s if type(s) == TypeDeclaration and s.interpretation and self.name != BOOL: block.check( s.name not in block.interpretations, f"Duplicate enumeration of {self.name} " f"in vocabulary and block {block.name}", ) block.interpretations[s.name] = s.interpretation
[docs]class Import(ASTNode): from .Interpret import interpret_import as interpret
[docs] def __init__(self, **kwargs): self.name = kwargs.pop("name")
def __str__(self): return f"Import {self.name}"
[docs]class TypeDeclaration(ASTNode): """AST node to represent `type <symbol> := <enumeration>` Args: name (string): name of the type arity (int): the number of arguments domains (List[SetName]): a singleton list with a set having the type's name codomain (SetName): the Boolean type super_sets(List[SetName]): super-type constructors ([Constructor]): list of constructors in the enumeration interpretation (SymbolInterpretation): the symbol interpretation map (dict[string, Expression]): a mapping from code to Expression in range block (Vocabulary): the vocabulary block that contains it symbol_expr (SymbolExpr): the symbol expression for the type prefix (Optional[str]): the type's prefix """ from .Annotate import annotate_declaration_typedeclaration as annotate_declaration from .Idp_to_Z3 import translate_typedeclaration as translate from .Interpret import interpret_typedeclaration as interpret
[docs] def __init__( self, parent, name: str, constructors: Optional[List[Constructor]] = None, enumeration: Optional[Enumeration] = None, super_set: Optional[SetName] = None, ): self.name = name self.constructors = constructors if constructors else [] enumeration = enumeration self.super_set = super_set self.arity: int = 1 self.domains: List[SetName] = [SetName(None, self.name)] self.codomain: SetName = BOOL_SETNAME self.super_sets: List[SetName] = [super_set] if super_set else self.domains self.block: Optional[Block] = None self.symbol_expr: Optional[SymbolExpr] = None self.map: dict[str, Expression] = {} self.interpretation: Optional[SymbolInterpretation] = None if enumeration: self.interpretation = SymbolInterpretation( parent=None, name=UnappliedSymbol(None, self.name), sign="≜", enumeration=enumeration, default=FALSE, ) self.interpretation.block = parent # Capture the prefix if there is one. self.prefix = split_prefix(self.name)
def __str__(self): if self.name in RESERVED_SYMBOLS: return "" enumeration = ( self.enumeration if hasattr(self, "enumeration") and self.enumeration else "" ) constructors = enumeration.constructors if enumeration else None constructed = ( "" if not bool(constructors) or all(0 == len(c.domains) for c in constructors) else "constructed from " ) enumeration = ( f"{constructed}{{{', '.join(str(c) for c in constructors)}}}" if constructors else f"{self.interpretation}" if self.interpretation else f"{enumeration}" ) return f"type {self.name} {'' if not enumeration else ':= ' + enumeration}"
[docs] def contains_element( self, term: Expression, extensions: dict[str, Extension] ) -> Expression: """returns an Expression that is TRUE when `term` is in the type""" if self.name == CONCEPT: comparisons = [ EQUALS([term, UnappliedSymbol.construct(c)]) for c in self.constructors ] return OR(comparisons) elif self.name in [BOOL, INT, REAL, DATE]: return TRUE else: (superset, filter) = extensions[self.name] if superset is not None: # superset.sort(key=lambda t: str(t)) if term.is_value(): comparisons = ( TRUE if any(term.same_as(t[0]) for t in superset) else FALSE ) else: comparisons = OR([EQUALS([term, t[0]]) for t in superset]) out = ( comparisons if filter is None else AND([filter([term]), comparisons]) ) elif filter is not None: out = filter([term]) else: out = TRUE return out
[docs]class SymbolDeclaration(ASTNode): """The class of AST nodes representing an entry in the vocabulary, declaring one or more symbols. Multi-symbols declaration are replaced by single-symbol declarations before the annotate() stage. Attributes: annotations : the annotations given by the expert. `annotations['reading']` is the annotation giving the intended meaning of the expression (in English). symbols ([str]): the symbols being defined, before expansion name (string): the identifier of the symbol, after expansion of the node arity (int): the number of arguments sorts (List[SetName]): the types of the arguments out (SetName): the type of the symbol applied to arguments domains (List[SetName]): the domain of the symbol (as a cross-product) codomain (SetName): the codomain of the symbol super_sets (List[SetName]): for predicates: immediate superset of the interpretation. symbol_expr (SymbolExpr, Optional): symbol expression of the same name instances (dict[string, Expression]): a mapping from the code of a symbol applied to a tuple of arguments to its parsed AST range (List[Expression]): the list of possible values private (Bool): True if the symbol name starts with '_' (for use in IC) block: the vocabulary where it is defined unit (str): the unit of the symbol, such as m (meters) heading (str): the heading that the symbol should belong to optimizable (bool): whether this symbol should get optimize buttons in the IC counter (bool): whether this symbol should get a number counter in the IC by_z3 (Bool): True if the symbol is created by z3 (testers and accessors of constructors) """ from .Annotate import annotate_declaration_symboldeclaration as annotate_declaration from .Idp_to_Z3 import translate_symboldeclaration as translate from .Interpret import interpret_symboldeclaration as interpret
[docs] def __init__( self, parent, annotations: Optional[Annotations], sorts: List[SetName], sort_: SetName, symbols: Optional[List[str]] = None, name: Optional[str] = None, partiality: Optional[str] = None, repeat_name: Optional[str] = None, domains: Optional[List[SetName]] = None, codomain: Optional[SetName] = None, super_sets: Optional[List[SetName]] = None, ): self.annotations: Annotation = annotations.annotations if annotations else {} self.symbols: Optional[List[str]] = symbols self.name: Optional[str] = name self.sorts = sorts self.sort_ = sort_ self.domains = domains or sorts self.codomain = codomain or sort_ self.super_sets = super_sets or sorts self.partiality = partiality self.repeat_name = repeat_name self.symbol_expr: Optional[SymbolExpr] = None self.arity = None self.private = None self.unit: Optional[str] = None self.heading: Optional[str] = None self.optimizable: bool = True self.counter: bool = False self.range: Optional[List[AppliedSymbol]] = ( None # all possible terms. Used in get_range and IO.py ) self.instances: Optional[dict[str, AppliedSymbol]] = ( None # not starting with '_' ) self.block: Optional[ASTNode] = None # vocabulary where it is declared self.view = ViewType.NORMAL # "hidden" | "normal" | "expanded" whether the symbol box should show atoms that contain that symbol, by default self.by_z3 = False # Capture the prefix if there is one. self.prefix = split_prefix(self.name)
@classmethod def make(cls, parent, name, sorts, sort_): o = cls(parent=parent, name=name, sorts=sorts, sort_=sort_, annotations=None) o.arity = len(o.sorts) return o def __str__(self): if self.name in RESERVED_SYMBOLS: return "" args = "⨯".join(map(str, self.domains)) if 0 < len(self.domains) else "" return ( f"{self.name}: " f"{ '('+args+')' if args else '()'}" f" → {self.codomain.name}" ) def __repr__(self): return str(self)
[docs] def has_in_domain( self, args: List[Expression], interpretations: dict[str, "SymbolInterpretation"], extensions: dict[str, Extension], ) -> Expression: """Returns an expression that is TRUE when `args` are in the domain of the symbol. Arguments: args (List[Expression]): the list of arguments to be checked, e.g. `[1, 2]` Returns: Expression: whether `(1,2)` is in the domain of the symbol """ assert self.arity == len( args ), f"Incorrect arity of {str(args)} for {self.name}" if len(self.domains) == self.arity: return AND( [ typ.has_element(term, extensions) for typ, term in zip(self.domains, args) ] ) else: return AppliedSymbol.make(self.domains[0].decl.symbol_expr, args)
[docs] def has_in_range( self, value: Expression, interpretations: dict[str, "SymbolInterpretation"], extensions: dict[str, Extension], ) -> Expression: """Returns an expression that says whether `value` is in the range of the symbol.""" return self.codomain.has_element(value, extensions)
[docs] def contains_element( self, term: Expression, extensions: dict[str, Extension] ) -> Expression: """returns an Expression that is TRUE when `term` satisfies the predicate""" assert self.codomain == BOOL_SETNAME and self.name is not None, "Internal error" (superset, filter) = extensions[self.name] if superset is not None: # superset.sort(key=lambda t: str(t)) comparisons = [EQUALS([term, t[0]]) for t in superset] out = ( OR(comparisons) if filter is None else AND([filter([term]), OR(comparisons)]) ) elif filter is not None: out = filter([term]) else: out = TRUE return out
[docs]class VarDeclaration(ASTNode): """represents a declaration of variable (IEP 24) Attributes: name (str): name of the variable subtype (SetName): type of the variable prefix (str, Optional): prefix of the variable """ from .Annotate import annotate_declaration_vardeclaration as annotate_declaration
[docs] def __init__(self, **kwargs): self.name = kwargs.pop("name") self.subtype = kwargs.pop("subtype") self.prefix = None
def __str__(self): return f"var {self.name}{self.subtype}"
Declaration = Union[TypeDeclaration, SymbolDeclaration] ################################ TheoryBlock ###############################
[docs]class TheoryBlock(ASTNode): """The class of AST nodes representing a theory block.""" from .Annotate import annotate_block_theory as annotate_block
[docs] def __init__(self, **kwargs): self.name = kwargs.pop("name") self.vocab_name = kwargs.pop("vocab_name") constraints: List[Expression] = kwargs.pop("constraints") self.definitions = kwargs.pop("definitions") self.interpretations = self.dedup_nodes(kwargs, "interpretations") self.name = "T" if not self.name else self.name self.vocab_name = "V" if not self.vocab_name else self.vocab_name self.prefix = split_prefix(self.name) self.declarations = {} self.def_constraints = {} # {(Declaration, Definition): List[Expression]} self.assignments = Assignments() self.constraints = OrderedSet() for c in constraints: if c.annotations is not None: c.expr.annotations = c.annotations.annotations self.constraints.append(c.expr) for definition in self.definitions: for rule in definition.rules: rule.block = self self.voc = None
def __str__(self): return self.name
[docs]class Definition(Expression): """The class of AST nodes representing an inductive definition. Attributes: id (num): unique identifier for each definition rules ([Rule]): set of rules for the definition, e.g., `!x: p(x) <- q(x)` renamed (dict[Declaration, List[Rule]]): rules with normalized body for each defined symbol, e.g., `!x: p(x) <- q(p1_)` (quantees and head are unchanged) canonicals (dict[Declaration, List[Rule]]): normalized rule for each defined symbol, e.g., `! p1_: p(p1_) <- q(p1_)` clarks (dict[Declaration, Transformed Rule]): normalized rule for each defined symbol (used to be Clark completion) e.g., `! p1_: p(p1_) <=> q(p1_)` def_vars (dict[String, dict[String, Variable]]): Fresh variables for arguments and result inductive (set[SymbolDeclaration]) set of SymbolDeclaration with an inductive definition cache (dict[SymbolDeclaration, str, Expression]): cache of instantiation of the definition inst_def_level (int): depth of recursion during instantiation """ definition_id = ( 0 # intentional static variable so that no two definitions get the same ID ) from .Annotate import annotate_definition as annotate from .Definition import get_def_constraints from .Definition import instantiate_definition_def as instantiate_definition from .EN import EN_definition as EN from .Interpret import interpret_definition as interpret
[docs] def __init__(self, parent, annotations: Optional[Annotations], mode, rules): Definition.definition_id += 1 self.id = Definition.definition_id self.mode = ( S.WELLFOUNDED if mode is None or "well-founded" in mode else S.COMPLETION if "completion" in mode else S.KRIPKEKLEENE if "Kripke-Kleene" in mode else S.COINDUCTION if "co-induction" in mode else S.STABLE if "stable" in mode else S.RECDATA if "recursive" in mode else mode ) assert type(self.mode) == S, f"Unsupported mode: {mode}" self.annotations: Annotation = annotations.annotations if annotations else {} self.rules: List[Rule] = rules self.renamed: dict[SymbolDeclaration, List[Rule]] = {} self.clarks: dict[SymbolDeclaration, Rule] = {} self.canonicals: dict[SymbolDeclaration, List[Rule]] = {} self.def_vars: dict[str, Variable] = {} self.inductive: set[SymbolDeclaration] = set() self.cache: dict[ Tuple[Declaration, str], Expression ] = {} # {decl, str: Expression} self.inst_def_level = 0
def __str__(self): return ( "Definition " + str(self.id) + " of " + ",".join([k.name for k in self.canonicals.keys()]) ) def __repr__(self): out = [] for rule in self.clarks.values(): out.append(repr(rule)) return NEWL.join(out) def __eq__(self, another): return self.id == another.id def __hash__(self): return hash(self.id) def __deepcopy__(self, memo): cls = self.__class__ # Extract the Definition class out = cls.__new__(cls) # Create a new instance of Definition memo[id(self)] = out out.__dict__.update(self.__dict__) out.rules = [deepcopy(x, memo) for x in self.rules] out.annotations = deepcopy(self.annotations, memo) out.canonicals = {x: deepcopy(y) for x, y in self.canonicals.items()} out.clarks = {x: deepcopy(y) for x, y in self.clarks.items()} out.mode = self.mode return out
[docs]class Rule(Expression): from .Annotate import annotate_rule as annotate from .Definition import instantiate_definition_rule as instantiate_definition from .EN import EN_rule as EN
[docs] def __init__( self, parent, annotations: Annotations, quantees: List[Quantee], definiendum: AppliedSymbol, out: Expression, body: Expression, ): self.annotations: Annotation = ( annotations.annotations if annotations else {"reading": str(self)} ) self.quantees = quantees self.definiendum = definiendum self.out = out self.body = body self.has_finite_domain = None # Bool self.block = None # theory where it occurs split_quantees(self) if self.body is None: self.body = TRUE self.original: Optional[Rule] = None self.implication: Optional[Expression] = None # rule in immlication form self.WDF: Optional[Expression] = None
def __repr__(self): quant = ( "" if not self.quantees else f"∀ {','.join(str(q) for q in self.quantees)}: " ) return ( f"{quant}{self.definiendum} " f"{(' = ' + str(self.out)) if self.out else ''}" f"← {str(self.body)}" ) def __str__(self): return repr(self) def __deepcopy__(self, memo): cls = self.__class__ # Extract the class of the object out = cls.__new__( cls ) # Create a new instance of the object based on extracted class memo[id(self)] = out out.__dict__.update(self.__dict__) out.definiendum = deepcopy(self.definiendum) out.definiendum.sub_exprs = [deepcopy(e) for e in self.definiendum.sub_exprs] out.out = deepcopy(self.out) out.body = deepcopy(self.body) return out
# Expressions : see Expression.py ################################ Structure ###############################
[docs]class Structure(ASTNode): """ The class of AST nodes representing an structure block. """ from .Annotate import annotate_block_struc as annotate_block
[docs] def __init__(self, **kwargs): """ The textx parser creates the Structure object. All information used in this method directly comes from text. """ self.name = kwargs.pop("name") self.vocab_name = kwargs.pop("vocab_name") self.interpretations = self.dedup_nodes(kwargs, "interpretations") self.name = "S" if not self.name else self.name self.vocab_name = "V" if not self.vocab_name else self.vocab_name self.prefix = split_prefix(self.name) self.voc = None self.declarations = {} self.assignments = Assignments()
def __str__(self): return self.name
[docs]class SymbolInterpretation(Expression): """ AST node representing `<symbol> := { <identifiers*> } else <default>.` Attributes: name (string): name of the symbol being enumerated. symbol_decl (SymbolDeclaration): symbol being enumerated enumeration ([Enumeration]): enumeration. default (Expression): default value (for function enumeration). is_type_enumeration (Bool): True if the enumeration is for a type symbol. """ from .Annotate import annotate_symbolinterpretation as annotate from .Interpret import interpret_symbolinterpretation as interpret
[docs] def __init__( self, parent, name: UnappliedSymbol, sign: str, enumeration: Enumeration, default: Optional[Expression], ): self.name = name.name self.sign = sign self.enumeration = enumeration self.default = default self.prefix = split_prefix(self.name) if not self.enumeration: self.enumeration = Enumeration(parent=self, tuples=[]) self.sign = ( "⊇" if self.sign == ":>" else "≜" if self.sign == ":=" else self.sign ) self.check( self.sign == "≜" or (type(self.enumeration) == FunctionEnum and self.default is None), "'⊇' can only be used with a functional enumeration ('→') without else clause", ) self.symbol_decl: Optional[SymbolDeclaration] = None self.is_type_enumeration = None self.block = None
def __repr__(self): return f"{self.name} {self.sign} {self.enumeration}"
[docs] def interpret_application(self, rank, applied, args, tuples=None): """returns an expression equivalent to `self.symbol` applied to `args`, simplified by the interpretation of `self.symbol`. This is a recursive function. Example: assume `f:>{(1,2)->A, (1, 3)->B, (2,1)->C}` and `args=[g(1),2)]`. The returned expression is: ``` if g(1) = 1 then A else if g(1)=2 then f(g(1),2) else f(g(1),2) ``` Args: rank (Int): iteration number (from 0) applied (AppliedSymbol): template to create new AppliedSymbol (ex: `g(1),a()`, before interpretation) args (List(Expression)): interpreted arguments applied to the symbol (ex: `g(1),2`) tuples (OrderedSet[TupleIDP], optional): relevant tuples for this iteration. Initialized with `[[1,2,A], [1,3,B], [2,1,C]]` Returns: Expression: Grounded interpretation of self.symbol applied to args """ if tuples == None: tuples = self.enumeration.sorted_tuples if all(a.is_value() for a in args): # use lookup key = ",".join(a.code for a in args) if key in self.enumeration.lookup: return self.enumeration.lookup[key] elif self.sign == "≜": # can use default return self.default if rank == self.symbol_decl.arity: # valid tuple -> return a value if not type(self.enumeration) == FunctionEnum: return TRUE if tuples else self.default else: self.check( len(tuples) <= 1, f"Duplicate values in structure " f"for {str(self.name)}{str(tuples[0])}", ) return ( self.default if not tuples # enumeration of constant else tuples[0].args[rank] ) else: # constructs If-then-else recursively out = ( self.default if self.default is not None else applied._change(sub_exprs=args) ) groups = groupby(tuples, key=lambda t: str(t.args[rank])) if args[rank].is_value(): for val, tuples2 in groups: # try to resolve if str(args[rank]) == val: out = self.interpret_application( rank + 1, applied, args, list(tuples2) ) else: for val, tuples2 in groups: tuples = list(tuples2) out = IF( EQUALS([args[rank], tuples[0].args[rank]]), self.interpret_application(rank + 1, applied, args, tuples), out, ) return out
[docs]class Enumeration(Expression): """Represents an enumeration of tuples of expressions. Used for predicates, or types without n-ary constructors. Attributes: tuples (OrderedSet[TupleIDP]): OrderedSet of TupleIDP of Expression sorted_tuples: a sorted list of tuples lookup: dictionary from arguments to values constructors (List[Constructor], optional): List of Constructor """ from .Annotate import annotate_enumeration as annotate from .Interpret import interpret_enumeration as interpret
[docs] def __init__(self, parent: ASTNode, tuples: List[TupleIDP]): self.sorted_tuples = sorted( tuples, key=lambda t: t.code ) # do not change dropdown order self.tuples: Optional[OrderedSet] = OrderedSet(tuples) self.lookup: dict[str, Expression] = {} self.constructors: Optional[List[Constructor]] if all( len(c.args) == 1 and type(c.args[0]) == UnappliedSymbol for c in self.tuples ): self.constructors = [CONSTRUCTOR(c.args[0].name) for c in self.tuples] else: self.constructors = None
def __repr__(self): return ( f'{{{", ".join([repr(t) for t in self.tuples])}}}' if self.tuples else f'{{{", ".join([repr(t) for t in self.constructors])}}}' )
[docs] def contains( self, args, arity: Optional[int] = None, rank: int = 0, tuples: Optional[List[TupleIDP]] = None, theory: Optional[Theory] = None, ) -> Expression: """returns an Expression that says whether Tuple args is in the enumeration""" if arity is None: arity = len(args) if rank == arity: # valid tuple return TRUE if tuples is None: tuples = self.sorted_tuples # constructs If-then-else recursively groups = groupby(tuples, key=lambda t: str(t.args[rank])) if args[rank].is_value(): for val, tuples2 in groups: # try to resolve if str(args[rank]) == val: return self.contains( args, arity, rank + 1, list(tuples2), theory=theory ) return FALSE else: if rank + 1 == arity: # use OR equalities = [EQUALS([args[rank], t.args[rank]]) for t in tuples] out = OR(equalities) out.enumerated = ", ".join(str(c) for c in tuples) return out out = FALSE for val, tuples2 in groups: tuples = list(tuples2) out = IF( EQUALS([args[rank], tuples[0].args[rank]]), self.contains(args, arity, rank + 1, tuples, theory), out, ) return out
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: """computes the extension of an enumeration, i.e., a set of tuples and a filter Args: interpretations (dict[str, &quot;SymbolInterpretation&quot;], optional): _description_. Defaults to None. extensions (dict[str, Extension], optional): _description_. Defaults to None. Returns: Extension: _description_ """ # assert all(c.range is not None for c in self.constructors) ranges = [c.range for c in self.constructors] return ([[t] for r in ranges for t in r], None)
[docs]class FunctionEnum(Enumeration):
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: self.check( False, f"Can't use function enumeration for type declaration or quantification", ) return (None, None) # dead code
[docs]class CSVEnumeration(Enumeration): pass
[docs]class ConstructedFrom(Enumeration): """Represents a 'constructed from' enumeration of constructors Attributes: tuples (OrderedSet[TupleIDP], Optional): OrderedSet of tuples of Expression constructors (List[Constructor]): List of Constructor accessors (dict[str, int]): index of the accessor in the constructors """ from .Annotate import annotate_constructedfrom as annotate from .Interpret import interpret_constructedfrom as interpret
[docs] def __init__( self, parent: Optional[ASTNode], constructed: str, constructors: List[Constructor], ): self.constructed = constructed self.constructors = constructors self.tuples: Optional[OrderedSet] = None self.accessors: dict[str, int] = dict()
[docs] def contains( self, args, arity: Optional[int] = None, rank: int = 0, tuples: Optional[List[TupleIDP]] = None, theory: Optional[Theory] = None, ) -> Expression: """returns True if args belong to the type enumeration""" # args must satisfy the tester of one of the constructors # TODO add tests assert len(args) == 1, f"Incorrect arity in {self.parent.name}{args}" if type(args[0].decl) == Constructor: # try to simplify it self.check( self.parent.name == args[0].decl.codomain, f"Incorrect type of {args[0]} for {self.parent.name}", ) self.check( len(args[0].sub_exprs) == len(args[0].decl.domains), f"Incorrect arity" ) return AND( [ t.decl.codomain.has_element(e, theory.extensions) for e, t in zip(args[0].sub_exprs, args[0].decl.domains) ] ) out = [ AppliedSymbol.construct(constructor.tester, args) for constructor in self.constructors ] return OR(out)
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: def filter(args): if ( type(args[0]) != Variable and type(args[0].decl) == Constructor ): # try to simplify it # TODO add tests self.check( self.parent.name == args[0].decl.codomain.name, f"Incorrect type of {args[0]} for {self.parent.name}", ) self.check( len(args[0].sub_exprs) == len(args[0].decl.domains), f"Incorrect arity", ) return AND( [ t.decl.domains[0].has_element(e, extensions) for e, t in zip(args[0].sub_exprs, args[0].decl.domains) ] ) out = [ AppliedSymbol.construct(constructor.tester, args) for constructor in self.constructors ] return OR(out) # return of filter() return ([t.args for t in self.tuples], None) if self.tuples else (None, filter)
[docs]class TupleIDP(Expression): from .Annotate import annotate_tupleidp as annotate from .Idp_to_Z3 import translate_tupleidp as translate
[docs] def __init__(self, **kwargs): self.args: List[Identifier] = kwargs.pop("args") self.code = intern(",".join([str(a) for a in self.args]))
def __str__(self): return self.code def __repr__(self): return f"({self.code})" if 1 < len(self.args) else self.code
[docs]class FunctionTuple(TupleIDP):
[docs] def __init__(self, **kwargs): self.args = kwargs.pop("args") if not isinstance(self.args, list): self.args = [self.args] self.value = kwargs.pop("value") self.args.append(self.value) self.code = intern(",".join([str(a) for a in self.args]))
[docs]class CSVTuple(TupleIDP): pass
[docs]class Ranges(Enumeration):
[docs] def __init__(self, parent: ASTNode, **kwargs): self.elements = kwargs.pop("elements") tuples: List[TupleIDP] = [] self.type: Optional[SetName] = None if self.elements: self.type = self.elements[0].fromI.type for x in self.elements: if x.fromI.type != self.type: if self.type in [INT_SETNAME, REAL_SETNAME] and x.fromI.type in [ INT_SETNAME, REAL_SETNAME, ]: self.type = REAL_SETNAME # convert to REAL tuples = [TupleIDP(args=[n.args[0].real()]) for n in tuples] else: self.check(False, f"incorrect value {x.fromI} for {self.type}") if x.toI is None: tuples.append(TupleIDP(args=[x.fromI])) elif ( self.type == INT_SETNAME and x.fromI.type == INT_SETNAME and x.toI.type == INT_SETNAME ): for i in range(x.fromI.py_value, x.toI.py_value + 1): tuples.append(TupleIDP(args=[Number(number=str(i))])) elif ( self.type == REAL_SETNAME and x.fromI.type == INT_SETNAME and x.toI.type == INT_SETNAME ): for i in range(x.fromI.py_value, x.toI.py_value + 1): tuples.append(TupleIDP(args=[Number(number=str(float(i)))])) elif self.type == REAL_SETNAME: self.check( False, f"Can't have a range over real: {x.fromI}..{x.toI}" ) elif ( self.type == DATE_SETNAME and x.fromI.type == DATE_SETNAME and x.toI.type == DATE_SETNAME ): for i in range(x.fromI.py_value, x.toI.py_value + 1): d = Date(iso=f"#{date.fromordinal(i).isoformat()}") tuples.append(TupleIDP(args=[d])) else: self.check(False, f"Incorrect value {x.toI} for {self.type}") Enumeration.__init__(self, parent=parent, tuples=tuples)
[docs] def contains( self, args, arity: Optional[int] = None, rank: int = 0, tuples: Optional[List[TupleIDP]] = None, theory: Optional[Theory] = None, ) -> Expression: var = args[0] if not self.elements: return TRUE if self.tuples and len(self.tuples) < MAX_QUANTIFIER_EXPANSION: es = [EQUALS([var, c.args[0]]) for c in self.tuples] e = OR(es) return e sub_exprs = [] for x in self.elements: if x.toI is None: e = EQUALS([var, x.fromI]) else: e = AComparison.make("≤", [x.fromI, var, x.toI]) sub_exprs.append(e) return OR(sub_exprs)
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: if not self.elements: return (None, None) if self.tuples is not None: # and len(self.tuples) < MAX_QUANTIFIER_EXPANSION: return ([t.args for t in self.tuples], None) def filter(args): sub_exprs = [] for x in self.elements: if x.toI is None: e = EQUALS([args[0], x.fromI]) else: e = AComparison.make("≤", [x.fromI, args[0], x.toI]) sub_exprs.append(e) return OR(sub_exprs) return (None, filter)
[docs]class RangeElement(Expression):
[docs] def __init__(self, **kwargs): self.fromI = kwargs.pop("fromI") self.toI = kwargs.pop("toI")
[docs]class IntRange(Ranges):
[docs] def __init__(self): Ranges.__init__(self, parent=self, elements=[]) self.type = INT_SETNAME self.tuples = None
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: return (None, None)
[docs]class RealRange(Ranges):
[docs] def __init__(self): Ranges.__init__(self, parent=self, elements=[]) self.type = REAL_SETNAME self.tuples = None
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: return (None, None)
[docs]class DateRange(Ranges):
[docs] def __init__(self): Ranges.__init__(self, parent=self, elements=[]) self.type = DATE_SETNAME self.tuples = None
[docs] def extensionE( self, extensions: Optional[dict[str, Extension]] = None ) -> Extension: return (None, None)
################################ Display ###############################
[docs]class Display(ASTNode): from .Annotate import annotate_block_display as annotate_block
[docs] def __init__(self, **kwargs): self.constraints = kwargs.pop("constraints") self.interpretations = self.dedup_nodes(kwargs, "interpretations") self.moveSymbols = False self.optionalPropagation = False self.manualPropagation = False self.optionalRelevance = False self.manualRelevance = False self.introduction: str = "" self.name = "display" self.voc = None
[docs] def run(self, idp): """Apply the display block to the idp theory""" def base_symbols(name, concepts) -> list[SymbolDeclaration]: """Verify that concepts is a list of concepts. Returns the list of symbol declarations.""" symbols = [] # All concepts should be concepts, except for the first # argument of 'unit' and 'heading'. 'introduction' can also be # ignored, as it always contains text. for i, symbol in enumerate(concepts): if name in ["unit", "heading"] and i == 0: continue elif name == "introduction": continue self.check( symbol.name.startswith("`"), f"arg '{symbol.name}' of {name}'" f" must begin with a tick '`'", ) self.check( symbol.name[1:] in self.voc.symbol_decls, f"argument '{symbol.name}' of '{name}'" f" must be a concept", ) symbols.append(self.voc.symbol_decls[symbol.name[1:]]) return symbols for k, interpretation in self.interpretations.items(): symbols = base_symbols( interpretation.name, [t.args[0] for t in interpretation.enumeration.tuples], ) if interpretation.name == EXPAND: for symbol in symbols: self.voc.symbol_decls[symbol.name].view = ViewType.EXPANDED elif interpretation.name == GOAL_SYMBOL: idp.theory.interpretations[k] = interpretation elif interpretation.name == COUNTER: for symbol in symbols: self.voc.symbol_decls[symbol.name].counter = True else: raise IDPZ3Error(f"Unknown enumeration in display: {interpretation}") for constraint in self.constraints: if type(constraint) == AppliedSymbol: self.check( constraint.symbol.name, f"Invalid syntax: {constraint}" ) # SymbolExpr $() name = constraint.symbol.name symbols = base_symbols(name, constraint.sub_exprs) if name == "hide": # e.g. hide(Length, Angle) for symbol in symbols: self.voc.symbol_decls[symbol.name].view = ViewType.HIDDEN elif name in [GOAL_SYMBOL, EXPAND]: # e.g. goal_symbol(`tax_amount`) self.check(False, f"Please use an enumeration for {name}") elif name == "unit": # e.g. unit('m', `length): for symbol in symbols: symbol.unit = str(constraint.sub_exprs[0]) elif name == "heading": # e.g. heading('Shape', `type). for symbol in symbols: symbol.heading = str(constraint.sub_exprs[0]) elif name == "noOptimization": # e.g., noOptimization(`temp) for symbol in symbols: symbol.optimizable = False elif name == "moveSymbols": self.moveSymbols = True elif name == "optionalPropagation": self.optionalPropagation = True elif name == "manualPropagation": self.manualPropagation = True elif name == "optionalRelevance": self.optionalRelevance = True elif name == "manualRelevance": self.manualRelevance = True elif name == "introduction": self.introduction = str(constraint.sub_exprs[0]) else: raise IDPZ3Error(f"Unknown display axiom:" f" {constraint}") elif type(constraint) == AComparison: # e.g. view = normal self.check(constraint.is_assignment(), "Internal error") self.check( constraint.sub_exprs[0].symbol.name, f"Invalid syntax: {constraint}" ) if constraint.sub_exprs[0].symbol.name == "view": if constraint.sub_exprs[1].name == "expanded": for s in self.voc.symbol_decls.values(): if ( type(s) == SymbolDeclaration and s.view == ViewType.NORMAL ): s.view = ( ViewType.EXPANDED ) # don't change hidden symbols else: self.check( constraint.sub_exprs[1].name == "normal", f"Unknown display axiom: {constraint}", ) else: raise IDPZ3Error(f"Unknown display axiom: {constraint}")
################################ Main ##################################
[docs]class Procedure(ASTNode):
[docs] def __init__(self, **kwargs): self.name = kwargs.pop("name") self.args = kwargs.pop("args") self.pystatements = kwargs.pop("pystatements")
def __str__(self): return f"{NEWL.join(str(s) for s in self.pystatements)}"
[docs]class Call1(ASTNode):
[docs] def __init__(self, **kwargs): self.name = kwargs.pop("name") self.par = kwargs.pop("par") if "par" in kwargs else None self.args = kwargs.pop("args") self.kwargs = kwargs.pop("kwargs") self.post = kwargs.pop("post")
def __str__(self): kwargs = ( "" if len(self.kwargs) == 0 else f"{',' if self.args else ''}{','.join(str(a) for a in self.kwargs)}" ) args = ( "" if not self.par else f"({','.join(str(a) for a in self.args)}{kwargs})" ) return f"{self.name}{args}" f"{'' if self.post is None else '.'+str(self.post)}"
[docs]class String(ASTNode):
[docs] def __init__(self, **kwargs): self.literal = kwargs.pop("literal")
def __str__(self): return f"{self.literal}"
[docs]class PyList(ASTNode):
[docs] def __init__(self, **kwargs): self.elements = kwargs.pop("elements")
def __str__(self): return f"[{','.join(str(e) for e in self.elements)}]"
[docs]class PyAssignment(ASTNode):
[docs] def __init__(self, **kwargs): self.var = kwargs.pop("var") self.val = kwargs.pop("val")
def __str__(self): return f"{self.var} = {self.val}"
######################################################################## Block = Union[Vocabulary, TheoryBlock, Structure, Display] dslFile = path.join(path.dirname(__file__), "Idp.tx") idpparser = metamodel_from_file( dslFile, memoization=True, classes=[ IDP, Annotations, Vocabulary, Import, VarDeclaration, TypeDeclaration, Accessor, SetName, SymbolDeclaration, SymbolExpr, TheoryBlock, Definition, Rule, AIfExpr, AGenExist, AQuantification, Quantee, ARImplication, AEquivalence, AImplication, ADisjunction, AConjunction, AComparison, ASumMinus, AMultDiv, APower, AUnary, AAggregate, AppliedSymbol, UnappliedSymbol, Number, Brackets, Date, Variable, Structure, SymbolInterpretation, Enumeration, FunctionEnum, CSVEnumeration, TupleIDP, FunctionTuple, CSVTuple, ConstructedFrom, Constructor, Ranges, RangeElement, Display, Procedure, Call1, String, PyList, PyAssignment, ], )