
IDP-Z3

Pierre Carbonnelle

Oct 06, 2020

CONTENTS:

1 Introduction 1
1.1 Installation . 1

2 The IDP Language 3
2.1 Overview . 3
2.2 Environment . 3
2.3 Vocabulary . 4
2.4 Theory . 6
2.5 Structure . 7
2.6 Display . 8

3 Index 9

4 Indices and tables 11

Index 13

i

ii

CHAPTER

ONE

INTRODUCTION

IDP-Z3 is a collection of software components implementing the Knowledge Base paradigm using the IDP language
and a Z3 SMT solver.

These components together enable the creation of these solutions:

• the Interactive Consultant, which allow a knowledge expert to enter knowledge about a particular problem
domain, and an end user to interactively find solutions for particular problem instances;

• (to be developed) a program with a command line interface to compute inferences on a knowledge base;

• (to be developed) a web-based Interactive Development Environment (IDE) to create Knowledge bases.

The source code of IDP-Z3 is publicly available under the GNU Affero General Public License.

1.1 Installation

IDP-Z3 is installed using the python package ecosystem, which supports Unix, Windows and MacOS.

• install python 3, with pip3, making sure that python3 is in the PATH.

• optional: create a virtual environment

• use git to clone https://gitlab.com/krr/autoconfigz3 to a directory on your machine

• open a terminal (or command prompt) in that directory and run the following commands to launch the Interactive
Consultant locally.

python3 -m pip install -r requirements.txt
python3 main.py

• open http://127.0.0.1:5000/ in your favorite browser to start the Interactive Consultant.

1

https://www.python.org/downloads/
https://pip.pypa.io/en/stable/installing/
https://pypi.org/project/virtualenv/
https://gitlab.com/krr/autoconfigz3
http://127.0.0.1:5000/

IDP-Z3

2 Chapter 1. Introduction

CHAPTER

TWO

THE IDP LANGUAGE

2.1 Overview

The IDP language is used to create knowledge bases. An IDP program is made of the following blocks of code:

vocabulary specify the types, predicates, functions and constants used to describe the problem domain.

theory specify the definitions and constraints satisfied by any solutions.

structure (optional) specify the interpretation of some predicates, functions and constants.

display (optional) configure the user interface of the Interactive Consultant

The basic skeleton of an IDP knowledge base is thus as follows:

vocabulary {
// here comes the specification of the vocabulary

}

theory {
// here comes the definitions and constraints

}

structure {
// here comes the interpretation of some symbols

}

display {
// here comes the configuration of the user interface

}

Everything between // and the end of the line is a comment.

2.2 Environment

Often, some elements of a problem instance are under the control of the user (possibly indirectly), while others are
not.

To capture this difference, the IDP language allows the creation of 2 vocabularies and 2 theories. The first one is called
‘environment’, the second ‘decision’. Hence, a more advanced skeleton of an IDP knowledge base is:

vocabulary environment {
// here comes the specification of the vocabulary to describe the environment

(continues on next page)

3

IDP-Z3

(continued from previous page)

}

vocabulary decision {
extern vocabulary environment
// here comes the specification of the vocabulary to describe the decisions and

→˓their consequences
}

theory environment:environment {
// here comes the definitions and constraints satisfied by any environment

→˓possibly faced by the user
}

theory decision:decision {
// here comes the definitions and constraints to be satisfied by any solution

}

structure {
// here comes the interpretation of some symbols

}

display {
// here comes the configuration of the user interface

}

2.3 Vocabulary

vocabulary V {
// here comes the vocabulary named V

}

The vocabulary block specifies the types, predicates, functions and constants used to describe the problem domain.
Each declaration goes on a new line (or are space separated).

Symbols begins with an alphabetic character or _, followed by alphanumeric characters or _. Symbols can also be
string literals delimited by ', e.g., 'blue planet'.

2.3.1 Types

IDP-Z3 has the following built-in types: bool, int, real, `Symbols.

Custom types can be defined by specifying a range of numeric literals, or a list of constructors (of arity 0).

type side = {1..4}
type color constructed from {red, blue, green}

4 Chapter 2. The IDP Language

IDP-Z3

2.3.2 Functions

A function with name MyFunc, input types T1, T2, T3 and output type T, is declared by:

MyFunc(T1, T2, T3) : T

IDP-Z3 does not support partial functions.

2.3.3 Predicates

A predicate with name MyPred and argument types T1, T2, T3 is declared by:

MyPred(T1, T2, T3)

2.3.4 Propositions and Constants

A proposition is a predicate of arity 0; a constant is a function of arity 0.

MyProp1 MyProp2.
MyConstant: int

2.3.5 Symbols type

The type `Symbols has one constructor for each function/predicate/constant declared in the vocabulary. For the
above example, the constructors of `Symbols are : `MyFunc, `MyPred, `MyProp1, `MyProp1, `MyConst.

2.3.6 Vocabulary annotations

To improve the display of functions and predicates in the Interactive Consultant, they can be annotated with their
intended meaning, a short comment, or a long comment. These annotations are enclosed in [and], and come before
the symbol declaration.

Intended meaning [this is a text] specifies the intended meaning of the symbol. This text is shown in the
header of the symbol’s box.

Short info [short:this is a short comment] specifies the short comment of the symbol. This comment
is shown when the mouse is over the info icon in the header of the symbol’s box.

Long info [long:this is a long comment] specifies the long comment of the symbol. This comment is
shown when the user clicks the info icon in the header of the symbol’s box.

2.3.7 Include another vocabulary

A vocabulary W may include a previously defined vocabulary V:

vocabulary W {
extern vocabulary V
// here comes the vocabulary named V

}

2.3. Vocabulary 5

IDP-Z3

2.4 Theory

theory T:V {
// here comes the theory named T, on vocabulary named V

}

A theory is a set of constraints and definitions to be satisfied. Before explaining their syntax, we need to introduce the
concept of term.

2.4.1 Mathematical expressions and Terms

A term is inductively defined as follows:

Numeric literal Numeric literals that follow the Python conventions are numerical terms of type int or real.

Constructor Each constructor of a type is a term having that type.

Constant a constant is a term whose type is derived from its declaration in the vocabulary.

Function application 𝐹 (𝑡1, 𝑡2, .., 𝑡𝑛) is a term, when 𝐹 is a function symbol of arity 𝑛, and 𝑡1, 𝑡2, .., 𝑡𝑛 are terms.
Each term must be of the appropriate type, as defined in the function declaration in the vocabulary. The resulting
type of the function application is also defined in the function declaration.

Negation -𝑡 is a numerical term, when 𝑡 is a numerical term.

Arithmetic 𝑡1𝑡2 is a numerical term, when 𝑡1, 𝑡2 are two numerical terms, and is one of the following math operators
+,−, *, /,̂ ,%. Mathematical operators can be chained as customary (e.g. 𝑥+𝑦+𝑧). The usual order of binding
is used.

Parenthesis (𝑡) is a term, when 𝑡 is a term

Cardinality aggregate #{𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑} is a numerical term when 𝑣1𝑣2..𝑣𝑛 are variables, and
𝜑 is a sentence containing these variables.

The term denotes the number of tuples of distinct values for 𝑣1𝑣2..𝑣𝑛 which make 𝜑 true.

Arithmetic aggregate {𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑 : 𝑡} is a numerical term when is 𝑠𝑢𝑚, 𝑣1𝑣2..𝑣𝑛 are
variables, 𝜑 is a sentence, and 𝑡 is a term.

The term denotes the sum of 𝑡 for each distinct tuple of values for 𝑣1𝑣2..𝑣𝑛 which make 𝜑 true.

Variable a variable is a term. Its type is derived from the quantifier expression that declares it (see below).

2.4.2 Sentences and constraints

A constraint is a sentence followed by .. A sentence is inductively defined as follows:

true and false true and false are sentences.

Predicate application 𝑃 (𝑡1, 𝑡2, .., 𝑡𝑛) is a sentence, when 𝑃 is a predicate symbol of arity 𝑛, and 𝑡1, 𝑡2, .., 𝑡𝑛 are
terms. Each term must be of the appropriate type, as defined in the predicate declaration. If the arity of 𝑃 is 0,
i.e., if 𝑃 is a proposition, then 𝑃 and 𝑃 () are sentences.

Comparison 𝑡1𝑡2 is a sentence, when 𝑡1, 𝑡2 are two numerical terms and is one of the following comparison operators
<, ,=, , >, (or, using ascii characters: =<,>=,∼=). Comparison operators can be chained as customary.

Negation ¬ 𝜑 is a sentence (or, using ascii characters: ∼ 𝜑) when 𝜑 is a sentence.

6 Chapter 2. The IDP Language

https://docs.python.org/3/reference/lexical_analysis.html#numeric-literals

IDP-Z3

Logic connectives 𝜑1𝜑2 is a sentence when 𝜑1, 𝜑2 are two sentences and is one of the following logic connectives
∨,∧,⇒,⇐,⇔ (or using ascii characters: |,&,=>,<=, <=> respectively). Logic connectives can be chained
as customary.

Parenthesis (𝜑) is a sentence when 𝜑 is a sentence.

Quantified formulas Quantified formulas are sentences. They have one of these two forms, where 𝑣1, .., 𝑣𝑛 are
variables and 𝜑 is a sentence:

∃𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑

∀𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝜑

Alternatively, ascii characters can be used: ?, !, respectively. For example, !x[int] y[int]: f(x,
y)=f(y,x). A variable may only occur in the 𝜑 sentence of a quantifier declaring that variable.

2.4.3 Definitions

A definition defines concepts, i.e. predicates or functions, in terms of other concepts. A definition consists of a set of
rules, enclosed by { and }.

Rules have one of the following forms:

∀𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝑃 (𝑡1, .., 𝑡𝑛)← 𝜑.

∀𝑣1[𝑡𝑦𝑝𝑒𝑂𝑓𝑉1]..𝑣𝑛[𝑡𝑦𝑝𝑒𝑂𝑓𝑉𝑛] : 𝐹 (𝑡1, .., 𝑡𝑛) = 𝑡← 𝜑.

where P is a predicate symbol, F is a function symbol, 𝑡, 𝑡1, 𝑡2, .., 𝑡𝑛 are terms that may contain the variables 𝑣1𝑣2..𝑣𝑛
and 𝜑 is a formula that may contain these variables. 𝑃 (𝑡1, 𝑡2, .., 𝑡𝑛) is called the head of the rule and 𝜑 the body. <-
can be used instead of ‘←’. If the body is true, the left arrow and body of the rule can be omitted.

2.5 Structure

A structure specifies the interpretation of some predicates and functions. A structure is a set of enumerations, having
one of the following forms:

𝑃 = { 𝑒𝑙11, 𝑒𝑙21, ...𝑒𝑙𝑛1 ;
𝑒𝑙12, 𝑒𝑙

2
2, ...𝑒𝑙

𝑛
2 ;

..

}
𝐹 = { 𝑒𝑙11, 𝑒𝑙21, ...𝑒𝑙𝑛1 , 𝑒𝑙1;

𝑒𝑙12, 𝑒𝑙
2
2, ...𝑒𝑙

𝑛
2 , 𝑒𝑙2;

..

} 𝑒𝑙𝑠𝑒 𝑒𝑙

where 𝑃 is a predicate of arity 𝑛, 𝐹 is a function of arity 𝑛, and 𝑒𝑙𝑗𝑖 are constructors or numeric literals. For function
𝐹 , 𝑒𝑙𝑛𝑖 specify the values of the function for the preceding tuple of 𝑒𝑙𝑗𝑖 arguments, and the element after 𝑒𝑙𝑠𝑒 specifies
the value of the function for non-enumerated tuples of arguments.

2.5. Structure 7

IDP-Z3

2.6 Display

The display block configures the user interface of the Interactive Consultant. It consists of a set of display facts, i.e.,
predicate and function applications terminated by ..

The following predicates and functions are available:

expand 𝑒𝑥𝑝𝑎𝑛𝑑(𝑠1, .., 𝑠𝑛) specifies that symbols 𝑠1, .., 𝑠𝑛 are shown expanded, i.e., that all sub-sentences of the
theory where they occur are shown on the screen.

For example, expand(`Length). will force the Interactive Consultant to show all sub-sentences containing
Length.

hide ℎ𝑖𝑑𝑒(𝑠1, .., 𝑠𝑛) specifies that symbols 𝑠1, .., 𝑠𝑛 are not shown on the screen.

For example, hide(`Length). will force the Interactive Consultant to not display the box containing Length
information.

view view = normal. (default) specifies that symbols are displayed in normal mode.

view = expanded. specifies that symbols are displayed expanded.

relevant 𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑡(𝑠1, .., 𝑠𝑛) specifies that symbols 𝑠1, .., 𝑠𝑛 are relevant, i.e. that they should never be greyed out.

Irrelevant symbols and sub-sentences, i.e. symbols whose interpretation do not constrain the interpretation of
the relevant symbols, are greyed out by the Interactive Consultant.

goal 𝑔𝑜𝑎𝑙(𝑠) specifies that symbols 𝑠 is a goal, i.e. that it is relevant and shown expanded.

moveSymbols When the display block contains moveSymbols., the Interactive Consultant is allowed to change
the layout of symbols on the screen, so that relevant symbols come first.

By default, the symbols do not move.

8 Chapter 2. The IDP Language

CHAPTER

THREE

INDEX

9

IDP-Z3

10 Chapter 3. Index

CHAPTER

FOUR

INDICES AND TABLES

• Index

• search

11

IDP-Z3

12 Chapter 4. Indices and tables

INDEX

A
annotation (vocabulary), 5

C
constant, 5
constraint, 6
constructor, 4

D
definition, 7
display block, 7

E
environment, 3
expanded view, 8

F
function, 4

I
include vocabulary, 5
intended meaning, 5
Interactive Consultant, 1

P
predicate, 5
proposition, 5

Q
quantifier expression, 7

R
rule, 7

S
sentence, 6
structure, 7
symbol, 5

T
term, 6

theory, 5
type, 4

V
vocabulary, 4

13

	Introduction
	Installation

	The IDP Language
	Overview
	Environment
	Vocabulary
	Theory
	Structure
	Display

	Index
	Indices and tables
	Index

