Appendix: Syntax summary¶
The following code illustrates the syntax of the various blocks used in IDP-Z3.
T denotes a type, c a constructor, p a proposition or predicate, f a constant or function. The equivalent ASCII-only encoding is shown on the right.
@prefix we: <http://www.example.org/whatever#>.
vocabulary V {
@prefix se: <http://www.example.org/somethingelse#>.
type T
type T ≜ {c1, c2, c3} type T := {c1, c2, c3}
type T ≜ constructed from {c1, c2(T1, f:T2)}
type T ≜ {1,2,3} ⊆ ℤ type T := {1,2,3} <: Int
type T ≜ {1..3} ⊆ ℤ type T := {1..3} <: Int
type we::T
type <http://www.example.org/foo#Type>
// built-in types: 𝔹, ℤ, ℝ, Date, Concept Bool, Int, Real, Date, Concept
p : () → 𝔹 p: () -> Bool
p1, p2 : T1 ⨯ T2 → 𝔹 p1, p2: T1*T2 -> Bool
f: total T → T f: total T -> T
f: T⨯T → T (domain: p, codomain: q) f: T*T -> T (domain: p, codomain: q)
f: partial T⨯T → T f: partial T*T -> T
f1, f2: Concept[T1->T2] → T f1, f2: Concept[T1->T2] -> T
[this is the intended meaning of p]
p : () → 𝔹
var x ∈ T var x in T
import W
}
theory T:V {
(¬p1()∧p2() ∨ p3() ⇒ p4() ⇔ p5()) ⇐ p6(). (~p1()&p2() | p3() => p4() <=> p5()) <= p6().
p(f1(f2())).
f1() < f2() ≤ f3() = f4() ≥ f5() > f6(). f1() < f2() =< f3() = f4() >= f5() > f6().
f() ≠ c. f() ~= c.
∀x,y ∈ T: p(x,y). !x,y in T: p(x,y).
∀x ∈ p, (y,z) ∈ q: q(x,x) ∨ p(y) ∨ p(z). !x in p, (y,z) in q: q(x,x) | p(y) | p(z).
∃x ∈ Concept[()→B]: $(x)(). ?x in Concept[()->B]: $(x)().
∃x: p(x). # if var x declared in voc ?x: p(x).
∃>1 x ∈ T: p(x). ?>1 x ∈ T: p(x).
f() in {1,2,3}.
f() = #{x∈T: p(x)}. f() = #{x in T: p(x)}.
f() = min{ f(x) | x in T: p(x) }.
f() = sum{{ f(x) | x in T: p(x) }}.
if p1() then p2() else p3().
f1() = if p() then f2() else f3().
p ≜ {1,2,3}. p := {1,2,3}.
p(#2020-01-01) is enumerated.
p(#TODAY) is not enumerated.
{ p(1). }
{ (co-induction)
∀x∈T: p1(x) ← p2(x). !x in T: p1(x) <- p2(x).
f(1)=1.
∀x: f(x)=1 ← p(x). !x: f(x)=1 <- p(x).
∀x: f(x)≜1 ← p(x). !x: f(x):=1 <- p(x).
}
[this is the intended meaning of the rule]
p().
}
structure S:V {
p ≜ false. p := false.
p ≜ {1,2,3}. p := {1,2,3}.
p ≜ {0..9, 100}. p := {0..9, 100}.
p ≜ {#2021-01-01}. p := {#2021-01-01}.
p ≜ {(1,2), (3,4)}. p := {(1,2), (3,4)}.
p ≜ { p := {
1 2 1 2
3 4 3 4
}. }.
f ≜ 1. f := 1.
f ≜ {→1} . f := {-> 1}.
f ≜ {1→1, 2→2}. f := {1->1, 2->2}.
f ≜ {(1,2)→3} else 2. f := {(1,2)->3} else 2.
f ⊇ {(1,2)→3}. f :> {(1,2)->3}.
}
display {
goal_symbol ≜ {`p1, `p2}. goal_symbol := {`p1, `p2}.
hide(`p).
expand ≜ {`p}. expand := {`p}.
view() = expanded.
optionalPropagation().
}
procedure main() {
pretty_print(model_check (T,S))
pretty_print(model_expand (T,S))
pretty_print(model_propagate(T,S))
pretty_print(minimize(T,S, term="cost()"))
}
See also the Built-in functions.
It is possible to use English connectives to create expressions:
for all T x: ∀ x ∈ T:
there is a T x: ∃ x ∈ T:
p() or q() p() ∨ q()
p() and q() p() ∧ q()
if p(), then q() p() ⇒ q()
p() are sufficient conditions for q() p() ⇒ q()
p() are necessary conditions for q() p() ⇐ q()
p() are necessary and sufficient conditions for q() p() ⇔ q()
p() is the same as q() p() ⇔ q()
x is y x = y
x is not y x ≠ y
x is strictly less than y x < y
x is less than y x ≤ y
x is greater than y x ≥ y
x is strictly greater than y x > y
the sum of f(x) for each T x such that p(x) sum{{f(x) | x∈T: p(x) }}
p() if q(). p() ← q().